BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 21071202)

  • 21. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.
    Raghukumar C; D'Souza-Ticlo D; Verma AK
    Crit Rev Microbiol; 2008; 34(3-4):189-206. PubMed ID: 19003603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
    Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR
    Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The chemical logic of enzymatic lignin degradation.
    Bugg TDH
    Chem Commun (Camb); 2024 Jan; 60(7):804-814. PubMed ID: 38165282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives.
    Lee S; Kang M; Bae JH; Sohn JH; Sung BH
    Front Bioeng Biotechnol; 2019; 7():209. PubMed ID: 31552235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bleaching with lignin-oxidizing enzymes.
    Bajpai P; Anand A; Bajpai PK
    Biotechnol Annu Rev; 2006; 12():349-78. PubMed ID: 17045199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Lignin-Degrading Enzymes.
    Xiao J; Zhang S; Chen G
    Protein Pept Lett; 2020; 27(7):574-581. PubMed ID: 31868142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-step biocatalytic depolymerization of lignin.
    Picart P; Liu H; Grande PM; Anders N; Zhu L; Klankermayer J; Leitner W; Domínguez de María P; Schwaneberg U; Schallmey A
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6277-6287. PubMed ID: 28634851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin degradation by microorganisms: A review.
    Atiwesh G; Parrish CC; Banoub J; Le TT
    Biotechnol Prog; 2022 Mar; 38(2):e3226. PubMed ID: 34854261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures].
    Wang C; Yu H; Fu S
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.
    Cong B; Wang N; Liu S; Liu F; Yin X; Shen J
    BMC Microbiol; 2017 May; 17(1):129. PubMed ID: 28558650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms.
    Kameshwar AK; Qin W
    Int J Biol Sci; 2016; 12(2):156-71. PubMed ID: 26884714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial lignin peroxidases: Applications, production challenges and future perspectives.
    Biko ODV; Viljoen-Bloom M; van Zyl WH
    Enzyme Microb Technol; 2020 Nov; 141():109669. PubMed ID: 33051019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-cultured production of lignin-modifying enzymes with white-rot fungi.
    Qi-He C; Krügener S; Hirth T; Rupp S; Zibek S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):700-18. PubMed ID: 21647688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin degradation by selected fungal species.
    Knežević A; Milovanović I; Stajić M; Lončar N; Brčeski I; Vukojević J; Cilerdžić J
    Bioresour Technol; 2013 Jun; 138():117-23. PubMed ID: 23612169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring bacterial lignin degradation.
    Brown ME; Chang MC
    Curr Opin Chem Biol; 2014 Apr; 19():1-7. PubMed ID: 24780273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.
    Wong WZ; H'ng PS; Chin KL; Sajap AS; Tan GH; Paridah MT; Othman S; Chai EW; Go WZ
    Environ Entomol; 2015 Oct; 44(5):1367-74. PubMed ID: 26314017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome.
    Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Roisin Y; Delfosse P; Calusinska M
    BMC Genomics; 2017 Sep; 18(1):681. PubMed ID: 28863779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.