These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21071510)
1. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Feng B; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G170-80. PubMed ID: 21071510 [TBL] [Abstract][Full Text] [Related]
2. In vitro functional characterization of mouse colorectal afferent endings. Feng B; Gebhart GF J Vis Exp; 2015 Jan; (95):52310. PubMed ID: 25651300 [TBL] [Abstract][Full Text] [Related]
8. Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. Brierley SM; Carter R; Jones W; Xu L; Robinson DR; Hicks GA; Gebhart GF; Blackshaw LA J Physiol; 2005 Aug; 567(Pt 1):267-81. PubMed ID: 15946967 [TBL] [Abstract][Full Text] [Related]
9. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Siri S; Maier F; Chen L; Santos S; Pierce DM; Feng B Am J Physiol Gastrointest Liver Physiol; 2019 Apr; 316(4):G473-G481. PubMed ID: 30702901 [TBL] [Abstract][Full Text] [Related]
10. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Brierley SM; Jones RC; Gebhart GF; Blackshaw LA Gastroenterology; 2004 Jul; 127(1):166-78. PubMed ID: 15236183 [TBL] [Abstract][Full Text] [Related]
11. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Hughes PA; Brierley SM; Martin CM; Brookes SJ; Linden DR; Blackshaw LA Gut; 2009 Oct; 58(10):1333-41. PubMed ID: 19324867 [TBL] [Abstract][Full Text] [Related]
12. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents. Feng B; Kiyatkin ME; La JH; Ge P; Solinga R; Silos-Santiago I; Gebhart GF J Neurosci; 2013 Jun; 33(23):9831-9. PubMed ID: 23739979 [TBL] [Abstract][Full Text] [Related]
13. Differences in the expression of transient receptor potential channel V1, transient receptor potential channel A1 and mechanosensitive two pore-domain K+ channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. La JH; Schwartz ES; Gebhart GF Neuroscience; 2011 Jul; 186():179-87. PubMed ID: 21549810 [TBL] [Abstract][Full Text] [Related]
14. Luminal hypertonicity and acidity modulate colorectal afferents and induce persistent visceral hypersensitivity. La JH; Feng B; Schwartz ES; Brumovsky PR; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2012 Oct; 303(7):G802-9. PubMed ID: 22859365 [TBL] [Abstract][Full Text] [Related]
15. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Feng B; La JH; Tanaka T; Schwartz ES; McMurray TP; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2012 Oct; 303(7):G817-24. PubMed ID: 22859364 [TBL] [Abstract][Full Text] [Related]
16. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. Jones RC; Xu L; Gebhart GF J Neurosci; 2005 Nov; 25(47):10981-9. PubMed ID: 16306411 [TBL] [Abstract][Full Text] [Related]
17. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. Feng B; Zhu Y; La JH; Wills ZP; Gebhart GF J Neurophysiol; 2015 Apr; 113(7):2618-34. PubMed ID: 25652923 [TBL] [Abstract][Full Text] [Related]