These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21071606)

  • 21. Flow and performance of an air-curtain biological safety cabinet.
    Huang RF; Chou CI
    Ann Occup Hyg; 2009 Jun; 53(4):425-40. PubMed ID: 19398506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.
    Chen JK; Huang RF; Hsin PY; Hsu CM; Chen CW
    Ind Health; 2012; 50(2):103-14. PubMed ID: 22293724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of boundary-layer separation controllers on a desktop fume hood.
    Huang RF; Chen JK; Hsu CM; Hung SF
    J Occup Environ Hyg; 2016 Oct; 13(10):802-15. PubMed ID: 27104797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.
    Huang RF; Chen HD; Hung CH
    Ind Health; 2007 Dec; 45(6):804-16. PubMed ID: 18212476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigation of turbulent diffusion in push-pull and exhaust fume cupboards.
    Chern MJ; Cheng WY
    Ann Occup Hyg; 2007 Aug; 51(6):517-31. PubMed ID: 17638713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.
    Dunn KH; Tsai CS; Woskie SR; Bennett JS; Garcia A; Ellenbecker MJ
    J Occup Environ Hyg; 2014; 11(10):D164-73. PubMed ID: 25175285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Evaluation of the reverse flow around a worker's body produced by a local exhaust hood].
    Ojima J
    Sangyo Eiseigaku Zasshi; 2003 Jul; 45(4):125-32. PubMed ID: 12968498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation and experimental investigation of dust-collecting performances of different dust exhaust hoods.
    Liu Y; Xia T; Wang Y; Chen J; Li X
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1367-1377. PubMed ID: 32857685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.
    Chessin SJ; Johnston JD
    Appl Occup Environ Hyg; 2002 Jul; 17(7):512-8. PubMed ID: 12083172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decontamination of a technetium contaminated fume hood in a research laboratory.
    O'Dou TJ; Bertoia J; Czerwinski KR
    Health Phys; 2011 Aug; 101 Suppl 2():S124-30. PubMed ID: 21709494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sash movement and walk-bys on aerodynamics and contaminant leakage of laboratory fume cupboards.
    Tseng LC; Huang RF; Chen CC; Chang CP
    Ind Health; 2007 Apr; 45(2):199-208. PubMed ID: 17485863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow dynamics and contaminant transport in industrial-type enclosing exhaust hoods.
    Karaismail E; Celik I; Guffey SE
    J Occup Environ Hyg; 2013; 10(7):384-96. PubMed ID: 23697648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vortex ventilation in the laboratory environment.
    Meisenzahl LR
    J Occup Environ Hyg; 2014; 11(10):672-9. PubMed ID: 25175282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Required response time for variable air volume fume hood controllers.
    Ekberg LE; Melin J
    Ann Occup Hyg; 2000 Mar; 44(2):143-50. PubMed ID: 10717266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance assessment of U.S. residential cooking exhaust hoods.
    Delp WW; Singer BC
    Environ Sci Technol; 2012 Jun; 46(11):6167-73. PubMed ID: 22568807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of thermal loading on laboratory fume hood performance.
    Johnston JD; Chessin SJ; Chesnovar BW; Lillquist DR
    Appl Occup Environ Hyg; 2000 Nov; 15(11):863-8. PubMed ID: 11062932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical investigation and recommendations for push-pull ventilation systems.
    Chern MJ; Ma CH
    J Occup Environ Hyg; 2007 Mar; 4(3):184-97. PubMed ID: 17237024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a tracer gas challenge with a human subject to investigate factors affecting the performance of laboratory fume hoods.
    Altemose BA; Flynn MR; Sprankle J
    Am Ind Hyg Assoc J; 1998 May; 59(5):321-7. PubMed ID: 9858975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and numerical studies on the impact of work practices used to control exposures occurring in booth-type hoods.
    Flynn MR; Lackey BD; Muthedath P
    Am Ind Hyg Assoc J; 1996 May; 57(5):469-75. PubMed ID: 8638518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerodynamic characteristics and design guidelines of push-pull ventilation systems.
    Huang RF; Lin SY; Jan SY; Hsieh RH; Chen YK; Chen CW; Yeh WY; Chang CP; Shih TS; Chen CC
    Ann Occup Hyg; 2005 Jan; 49(1):1-15. PubMed ID: 15591077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.