These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Liu Y; Davanço M; Aksyuk V; Srinivasan K Phys Rev Lett; 2013 May; 110(22):223603. PubMed ID: 23767723 [TBL] [Abstract][Full Text] [Related]
4. Observation of coherent optical information storage in an atomic medium using halted light pulses. Liu C; Dutton Z; Behroozi CH; Hau LV Nature; 2001 Jan; 409(6819):490-3. PubMed ID: 11206540 [TBL] [Abstract][Full Text] [Related]
5. Optomechanically induced transparency in the nonlinear quantum regime. Kronwald A; Marquardt F Phys Rev Lett; 2013 Sep; 111(13):133601. PubMed ID: 24116779 [TBL] [Abstract][Full Text] [Related]
8. Stationary pulses of light in an atomic medium. Bajcsy M; Zibrov AS; Lukin MD Nature; 2003 Dec; 426(6967):638-41. PubMed ID: 14668857 [TBL] [Abstract][Full Text] [Related]
9. Cascaded optical transparency in multimode-cavity optomechanical systems. Fan L; Fong KY; Poot M; Tang HX Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909 [TBL] [Abstract][Full Text] [Related]
10. Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble. Xiao Y; Yu YF; Zhang ZM Opt Express; 2014 Jul; 22(15):17979-89. PubMed ID: 25089417 [TBL] [Abstract][Full Text] [Related]
11. Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Liao Q; Xiao X; Nie W; Zhou N Opt Express; 2020 Feb; 28(4):5288-5305. PubMed ID: 32121753 [TBL] [Abstract][Full Text] [Related]
12. Transparency and tunable slow and fast light in a nonlinear optomechanical cavity. Li L; Nie W; Chen A Sci Rep; 2016 Oct; 6():35090. PubMed ID: 27725763 [TBL] [Abstract][Full Text] [Related]
13. Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode. Qin GQ; Yang H; Mao X; Wen JW; Wang M; Ruan D; Long GL Opt Express; 2020 Jan; 28(1):580-592. PubMed ID: 32118983 [TBL] [Abstract][Full Text] [Related]
14. Local modulation of double optomechanically induced transparency and amplification. Yang Q; Hou BP; Lai DG Opt Express; 2017 May; 25(9):9697-9711. PubMed ID: 28468351 [TBL] [Abstract][Full Text] [Related]
15. Optomechanically induced sum sideband generation. Xiong H; Si LG; Lü XY; Wu Y Opt Express; 2016 Mar; 24(6):5773-83. PubMed ID: 27136775 [TBL] [Abstract][Full Text] [Related]
16. Thermo-optically induced transparency on a photonic chip. Clementi M; Iadanza S; Schulz SA; Urbinati G; Gerace D; O'Faloain L; Galli M Light Sci Appl; 2021 Dec; 10(1):240. PubMed ID: 34862362 [TBL] [Abstract][Full Text] [Related]
17. Multi-normal mode-splitting for an optical cavity with electromagnetically induced transparency medium. Yu X; Zhang J Opt Express; 2010 Mar; 18(5):4057-65. PubMed ID: 20389420 [TBL] [Abstract][Full Text] [Related]
18. Optomechanically induced transparency in the mechanical-mode splitting regime. Ma J; You C; Si LG; Xiong H; Yang X; Wu Y Opt Lett; 2014 Jul; 39(14):4180-3. PubMed ID: 25121681 [TBL] [Abstract][Full Text] [Related]
19. Parity-time-symmetry enhanced optomechanically-induced-transparency. Li W; Jiang Y; Li C; Song H Sci Rep; 2016 Aug; 6():31095. PubMed ID: 27489193 [TBL] [Abstract][Full Text] [Related]