These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 21071670)

  • 41. Cardiac conduction is required to preserve cardiac chamber morphology.
    Chi NC; Bussen M; Brand-Arzamendi K; Ding C; Olgin JE; Shaw RM; Martin GR; Stainier DY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14662-7. PubMed ID: 20675583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.
    Beiert T; Bruegmann T; Sasse P
    Cardiovasc Res; 2014 Jun; 102(3):507-16. PubMed ID: 24576953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region.
    Abu Nahia K; Migdał M; Quinn TA; Poon KL; Łapiński M; Sulej A; Liu J; Mondal SS; Pawlak M; Bugajski Ł; Piwocka K; Brand T; Kohl P; Korzh V; Winata C
    Cell Mol Life Sci; 2021 Oct; 78(19-20):6669-6687. PubMed ID: 34557935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Let there be light: zebrafish neurobiology and the optogenetic revolution.
    Wyart C; Del Bene F
    Rev Neurosci; 2011; 22(1):121-30. PubMed ID: 21615266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autoregulation of chronotropic response of the heart through pacemaker stretch.
    Pathak CL
    Cardiology; 1973; 58(1):45-64. PubMed ID: 4145696
    [No Abstract]   [Full Text] [Related]  

  • 46. Genetic and physiologic dissection of the vertebrate cardiac conduction system.
    Chi NC; Shaw RM; Jungblut B; Huisken J; Ferrer T; Arnaout R; Scott I; Beis D; Xiao T; Baier H; Jan LY; Tristani-Firouzi M; Stainier DY
    PLoS Biol; 2008 May; 6(5):e109. PubMed ID: 18479184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The effect of dynamic and static stretch on the spontaneous frequency of isolated pacemaker tissue of the heart].
    Golenhofen K; Lippross H
    Pflugers Arch; 1969; 309(2):145-58. PubMed ID: 5815324
    [No Abstract]   [Full Text] [Related]  

  • 48. Development of the cardiac conduction system in zebrafish.
    Poon KL; Liebling M; Kondrychyn I; Brand T; Korzh V
    Gene Expr Patterns; 2016 Jul; 21(2):89-96. PubMed ID: 27593944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. P wave variations associated with change in heart rate, with sepcial reference to the site of impulse origin.
    Myburgh DP
    S Afr Med J; 1967 Sep; 41(34):848-52. PubMed ID: 6053877
    [No Abstract]   [Full Text] [Related]  

  • 50. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
    Weber M; Huisken J
    Swiss Med Wkly; 2015; 145():w14227. PubMed ID: 26700795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sinoatrial and Atrioventricular Blocks: Who First Described Them and How? [Retrospectroscope].
    Valentinuzzi ME
    IEEE Pulse; 2017; 8(6):62-66. PubMed ID: 29155381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Displacement Analysis of Myocardial Mechanical Deformation (DIAMOND) Reveals Segmental Heterogeneity of Cardiac Function in Embryonic Zebrafish.
    Chen J; Packard RRS
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overlapping cardiac programs in heart development and regeneration.
    Zhen YS; Wu Q; Xiao CL; Chang NN; Wang X; Lei L; Zhu X; Xiong JW
    J Genet Genomics; 2012 Sep; 39(9):443-9. PubMed ID: 23021544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetic LED array for perturbing cardiac electrophysiology.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1619-22. PubMed ID: 24110013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of vascular contractility by the cardiac pacemaker.
    Mangel A; Fahim M; van Breemen C
    Science; 1982 Mar; 215(4540):1627-9. PubMed ID: 7071582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optogenetics for in vivo cardiac pacing and resynchronization therapies.
    Nussinovitch U; Gepstein L
    Nat Biotechnol; 2015 Jul; 33(7):750-4. PubMed ID: 26098449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish.
    Burczyk MS; Burkhalter MD; Tena TC; Grisanti LA; Kauk M; Matysik S; Donow C; Kustermann M; Rothe M; Cui Y; Raad F; Laue S; Moretti A; Zimmermann WH; Wess J; Kühl M; Hoffmann C; Tilley DG; Philipp M
    JCI Insight; 2019 Oct; 4(20):. PubMed ID: 31619590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical control of zebrafish behavior with halorhodopsin.
    Arrenberg AB; Del Bene F; Baier H
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17968-73. PubMed ID: 19805086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish.
    Staudt D; Stainier D
    Annu Rev Genet; 2012; 46():397-418. PubMed ID: 22974299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.