BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21071681)

  • 1. Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms.
    Thomas RG; Hay MJ
    J Exp Bot; 2011 Jan; 62(3):1027-36. PubMed ID: 21071681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of correlative inhibition of axillary bud outgrowth by basal branches varies with growth stage in Trifolium repens.
    Thomas RG; Hay MJ
    J Exp Bot; 2015 Jul; 66(13):3803-13. PubMed ID: 25922495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among shoot sinks for resources exported from nodal roots regulate branch development of distal non-rooted portions of Trifolium repens L.
    Thomas RG; Hay MJ; Newton PC
    J Exp Bot; 2003 Sep; 54(390):2091-104. PubMed ID: 12885859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of shoot branching patterns by the basal root system: towards a predictive model.
    Thomas RG; Hay MJ
    J Exp Bot; 2008; 59(6):1163-73. PubMed ID: 18375931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axillary bud outgrowth potential is determined by parent apical bud activity.
    Thomas RG; Hay MJ
    J Exp Bot; 2009; 60(15):4275-85. PubMed ID: 19717528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth.
    Balla J; Kalousek P; Reinöhl V; Friml J; Procházka S
    Plant J; 2011 Feb; 65(4):571-7. PubMed ID: 21219506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential bud activation by a net positive root signal explains branching phenotype in prostrate clonal herbs: a model.
    Thomas RG; Li FY; Hay MJ
    J Exp Bot; 2014 Feb; 65(2):673-82. PubMed ID: 24399176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A developmentally based categorization of branching in Trifolium repens L.: influence of nodal roots.
    Thomas RG; Hay MJ; Newton PC
    Ann Bot; 2002 Sep; 90(3):379-89. PubMed ID: 12234150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulative activation of axillary buds by nodal roots in Trifolium repens L.
    Thomas RG; Hay MJ
    J Exp Bot; 2007; 58(8):2069-78. PubMed ID: 17470443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoot branching in response to nodal roots is mimicked by application of exogenous cytokinin in Trifolium repens.
    Thomas RG; Hay MJM
    Funct Plant Biol; 2015 Feb; 42(2):115-125. PubMed ID: 32480658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning the axis in plants--auxin in control.
    De Smet I; Jürgens G
    Curr Opin Genet Dev; 2007 Aug; 17(4):337-43. PubMed ID: 17627808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem.
    Bishopp A; Lehesranta S; Vatén A; Help H; El-Showk S; Scheres B; Helariutta K; Mähönen AP; Sakakibara H; Helariutta Y
    Curr Biol; 2011 Jun; 21(11):927-32. PubMed ID: 21620705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase.
    Mathesius U
    J Exp Bot; 2001 Mar; 52(Spec Issue):419-26. PubMed ID: 11326048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoot branching in nutrient-limited Trifolium repens is primarily restricted by shortage of root-derived promoter signals.
    Thomas RG; Hay MJM
    Funct Plant Biol; 2014 Apr; 41(4):401-410. PubMed ID: 32481000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?
    Renton M; Hanan J; Ferguson BJ; Beveridge CA
    New Phytol; 2012 May; 194(3):704-715. PubMed ID: 22443265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin-cytokinin interactions in the control of shoot branching.
    Shimizu-Sato S; Tanaka M; Mori H
    Plant Mol Biol; 2009 Mar; 69(4):429-35. PubMed ID: 18974937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ready, steady, go! A sugar hit starts the race to shoot branching.
    Barbier FF; Lunn JE; Beveridge CA
    Curr Opin Plant Biol; 2015 Jun; 25():39-45. PubMed ID: 25938609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex.
    Swarup R; Friml J; Marchant A; Ljung K; Sandberg G; Palme K; Bennett M
    Genes Dev; 2001 Oct; 15(20):2648-53. PubMed ID: 11641271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.