These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21071798)

  • 1. Finding significant matches of position weight matrices in linear time.
    Pizzi C; Rastas P; Ukkonen E
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):69-79. PubMed ID: 21071798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple, Fast, Filter-Based Algorithm for Approximate Circular Pattern Matching.
    Azim MA; Iliopoulos CS; Rahman MS; Samiruzzaman M
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):93-100. PubMed ID: 26992174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved heuristic algorithm for finding motif signals in DNA sequences.
    Huang CW; Lee WS; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):959-75. PubMed ID: 20855921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences.
    Hu J; Yang YD; Kihara D
    BMC Bioinformatics; 2006 Jul; 7():342. PubMed ID: 16839417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOODS: fast search for position weight matrix matches in DNA sequences.
    Korhonen J; Martinmäki P; Pizzi C; Rastas P; Ukkonen E
    Bioinformatics; 2009 Dec; 25(23):3181-2. PubMed ID: 19773334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Provably sensitive indexing strategies for biosequence similarity search.
    Buhler J
    J Comput Biol; 2003; 10(3-4):399-417. PubMed ID: 13677335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets.
    Yu Q; Huo H; Vitter JS; Huan J; Nekrich Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):384-97. PubMed ID: 26357225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.
    Tanaka S
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):361-74. PubMed ID: 26355783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient motif finding algorithms for large-alphabet inputs.
    Kuksa PP; Pavlovic V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S1. PubMed ID: 21034426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On counting position weight matrix matches in a sequence, with application to discriminative motif finding.
    Sinha S
    Bioinformatics; 2006 Jul; 22(14):e454-63. PubMed ID: 16873507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences.
    Le T; Altman T; Gardiner K
    Bioinformatics; 2010 Feb; 26(3):302-9. PubMed ID: 19996163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved algorithms for matching r-separated sets with applications to protein structure alignment.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):226-9. PubMed ID: 23702560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between weight matrix and substitution matrix: motif search by similarity.
    Zheng WM
    Bioinformatics; 2005 Apr; 21(7):938-43. PubMed ID: 15514002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction.
    Kamath U; Compton J; Islamaj-Doğan R; De Jong KA; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1387-98. PubMed ID: 22508909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
    Seiler M; Mehrle A; Poustka A; Wiemann S
    BMC Bioinformatics; 2006 Mar; 7():144. PubMed ID: 16542452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.
    Roy I; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):99-111. PubMed ID: 26886735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.