These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21071805)

  • 1. Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in Escherichia coli.
    Ropers D; Baldazzi V; de Jong H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):166-81. PubMed ID: 21071805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural identification of piecewise-linear models of genetic regulatory networks.
    Porreca R; Drulhe S; de Jong H; Ferrari-Trecate G
    J Comput Biol; 2008 Dec; 15(10):1365-80. PubMed ID: 19040369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Boolean and piecewise affine differential models for genetic networks.
    Chaves M; Tournier L; Gouzé JL
    Acta Biotheor; 2010 Sep; 58(2-3):217-32. PubMed ID: 20665073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative simulation of the carbon starvation response in Escherichia coli.
    Ropers D; de Jong H; Page M; Schneider D; Geiselmann J
    Biosystems; 2006 May; 84(2):124-52. PubMed ID: 16325332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks.
    Batt G; Besson B; Ciron PE; de Jong H; Dumas E; Geiselmann J; Monte R; Monteiro PT; Page M; Rechenmann F; Ropers D
    Methods Mol Biol; 2012; 804():439-62. PubMed ID: 22144166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical analysis of piecewise affine models of gene regulatory networks.
    Tournier L; Gouzé JL
    Theory Biosci; 2008 Jun; 127(2):125-34. PubMed ID: 18437441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics. Getting closer to the whole picture.
    Sauer U; Heinemann M; Zamboni N
    Science; 2007 Apr; 316(5824):550-1. PubMed ID: 17463274
    [No Abstract]   [Full Text] [Related]  

  • 8. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing different ODE modelling approaches for gene regulatory networks.
    Polynikis A; Hogan SJ; di Bernardo M
    J Theor Biol; 2009 Dec; 261(4):511-30. PubMed ID: 19665034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elementary network reconstruction: a framework for the analysis of regulatory networks in biological systems.
    Dharmadi Y; Gonzalez R
    J Theor Biol; 2010 Apr; 263(4):499-509. PubMed ID: 20004670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecewise linear and Boolean models of chemical reaction networks.
    Veliz-Cuba A; Kumar A; Josić K
    Bull Math Biol; 2014 Dec; 76(12):2945-84. PubMed ID: 25412739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the Significant Flux Backbone of Escherichia coli metabolism.
    Güell O; Sagués F; Serrano MÁ
    FEBS Lett; 2017 May; 591(10):1437-1451. PubMed ID: 28391640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology.
    Villaverde AF; Henriques D; Smallbone K; Bongard S; Schmid J; Cicin-Sain D; Crombach A; Saez-Rodriguez J; Mauch K; Balsa-Canto E; Mendes P; Jaeger J; Banga JR
    BMC Syst Biol; 2015 Feb; 9():8. PubMed ID: 25880925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust stability analysis and design under consideration of multiple feedback loops of the tryptophan regulatory network of Escherichia coli.
    Meyer-Baese A; Theis F; Emmett MR
    Adv Exp Med Biol; 2010; 680():189-97. PubMed ID: 20865501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation.
    Houser JR; Barnhart C; Boutz DR; Carroll SM; Dasgupta A; Michener JK; Needham BD; Papoulas O; Sridhara V; Sydykova DK; Marx CJ; Trent MS; Barrick JE; Marcotte EM; Wilke CO
    PLoS Comput Biol; 2015 Aug; 11(8):e1004400. PubMed ID: 26275208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.
    Tabe-Bordbar S; Marashi SA
    Biotechnol Lett; 2013 Dec; 35(12):2039-44. PubMed ID: 24078125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli.
    Gutierrez-Ríos RM; Freyre-Gonzalez JA; Resendis O; Collado-Vides J; Saier M; Gosset G
    BMC Microbiol; 2007 Jun; 7():53. PubMed ID: 17559662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
    Long CP; Gonzalez JE; Sandoval NR; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():102-113. PubMed ID: 27212692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.