BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21071808)

  • 1. Predicting metabolic fluxes using gene expression differences as constraints.
    van Berlo RJ; de Ridder D; Daran JM; Daran-Lapujade PA; Teusink B; Reinders MJ
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):206-16. PubMed ID: 21071808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.
    Guo W; Feng X
    PLoS One; 2016; 11(4):e0154188. PubMed ID: 27100883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of flux balance analysis in systems biology.
    Gianchandani EP; Chavali AK; Papin JA
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(3):372-382. PubMed ID: 20836035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools.
    Reznik E; Mehta P; Segrè D
    PLoS Comput Biol; 2013; 9(8):e1003195. PubMed ID: 24009492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting biological system objectives de novo from internal state measurements.
    Gianchandani EP; Oberhardt MA; Burgard AP; Maranas CD; Papin JA
    BMC Bioinformatics; 2008 Jan; 9():43. PubMed ID: 18218092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux analysis and visualization.
    Toya Y; Kono N; Arakawa K; Tomita M
    J Proteome Res; 2011 Aug; 10(8):3313-23. PubMed ID: 21815690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimality criteria for the prediction of metabolic fluxes in yeast mutants.
    Snitkin ES; Segrè D
    Genome Inform; 2008; 20():123-34. PubMed ID: 19425128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the size of the solution space of metabolic networks.
    Braunstein A; Mulet R; Pagnani A
    BMC Bioinformatics; 2008 May; 9():240. PubMed ID: 18489757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.
    Reimonn TM; Park SY; Agarabi CD; Brorson KA; Yoon S
    Biotechnol Prog; 2016 Sep; 32(5):1163-1173. PubMed ID: 27452371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes.
    Bordel S; Agren R; Nielsen J
    PLoS Comput Biol; 2010 Jul; 6(7):e1000859. PubMed ID: 20657658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison and analysis of objective functions in flux balance analysis.
    García Sánchez CE; Torres Sáez RG
    Biotechnol Prog; 2014; 30(5):985-91. PubMed ID: 25044958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.