BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21071824)

  • 1. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy.
    Wei P; Zhang L; Lu Y; Man N; Wen L
    Nanotechnology; 2010 Dec; 21(49):495101. PubMed ID: 21071824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal.
    Zhang Q; Yang W; Man N; Zheng F; Shen Y; Sun K; Li Y; Wen LP
    Autophagy; 2009 Nov; 5(8):1107-17. PubMed ID: 19786831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pristine C
    Demir E; Nedzvetsky VS; Ağca CA; Kirici M
    Neurochem Res; 2020 Oct; 45(10):2385-2397. PubMed ID: 32712876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles.
    Hu Y; Zhang HR; Dong L; Xu MR; Zhang L; Ding WP; Zhang JQ; Lin J; Zhang YJ; Qiu BS; Wei PF; Wen LP
    Nanoscale; 2019 Jun; 11(24):11789-11807. PubMed ID: 31184642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preparation and Evaluation of Fullerene Based Nanomedicine].
    Iohara D
    Yakugaku Zasshi; 2019; 139(12):1539-1546. PubMed ID: 31787641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy.
    Shi J; Liu Y; Wang L; Gao J; Zhang J; Yu X; Ma R; Liu R; Zhang Z
    Acta Biomater; 2014 Mar; 10(3):1280-91. PubMed ID: 24211343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water disinfection processes change the cytotoxicity of C
    Zhang Q; Wang M; Gu C; Zhang C
    Water Res; 2019 Oct; 163():114867. PubMed ID: 31330401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer.
    Shi J; Wang B; Wang L; Lu T; Fu Y; Zhang H; Zhang Z
    J Control Release; 2016 Aug; 235():245-258. PubMed ID: 27276066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment.
    Li Z; Pan LL; Zhang FL; Wang Z; Shen YY; Zhang ZZ
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4513-8. PubMed ID: 24738422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of tumor necrosis factor-mediated cell death by fullerenes.
    Harhaji L; Isakovic A; Vucicevic L; Janjetovic K; Misirkic M; Markovic Z; Todorovic-Markovic B; Nikolic N; Vranjes-Djuric S; Nikolic Z; Trajkovic V
    Pharm Res; 2008 Jun; 25(6):1365-76. PubMed ID: 17999162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic reactive oxygen generation.
    Scharff P; Ritter U; Matyshevska OP; Prylutska SV; Grynyuk II; Golub AA; Prylutskyy YI; Burlaka AP
    Tumori; 2008; 94(2):278-83. PubMed ID: 18564617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion-Activated Chemotherapeutic Function of Nanoparticulate Platinum as a Cisplatin Resistance-Overcoming Prodrug with Limited Autophagy Induction.
    Cheng HJ; Wu TH; Chien CT; Tu HW; Cha TS; Lin SY
    Small; 2016 Nov; 12(44):6124-6133. PubMed ID: 27717137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide.
    Lee CM; Huang ST; Huang SH; Lin HW; Tsai HP; Wu JY; Lin CM; Chen CT
    Nanomedicine; 2011 Feb; 7(1):107-14. PubMed ID: 20620236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer.
    Zhang Y; Sha R; Zhang L; Zhang W; Jin P; Xu W; Ding J; Lin J; Qian J; Yao G; Zhang R; Luo F; Zeng J; Cao J; Wen LP
    Nat Commun; 2018 Oct; 9(1):4236. PubMed ID: 30315154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells.
    Zhou C; Zhong W; Zhou J; Sheng F; Fang Z; Wei Y; Chen Y; Deng X; Xia B; Lin J
    Autophagy; 2012 Aug; 8(8):1215-26. PubMed ID: 22647982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C60 fullerene as synergistic agent in tumor-inhibitory Doxorubicin treatment.
    Prylutska S; Grynyuk I; Matyshevska O; Prylutskyy Y; Evstigneev M; Scharff P; Ritter U
    Drugs R D; 2014 Dec; 14(4):333-40. PubMed ID: 25504158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of hydrophilic C60(OH)10/2-hydroxypropyl-β-cyclodextrin nanoparticles for the treatment of a liver injury induced by an overdose of acetaminophen.
    Umezaki Y; Iohara D; Anraku M; Ishitsuka Y; Irie T; Uekama K; Hirayama F
    Biomaterials; 2015 Mar; 45():115-23. PubMed ID: 25662501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy and reactive oxygen species modulate cytotoxicity induced by suppression of ATM kinase activity in head and neck cancer cells.
    Lin CS; Wang YC; Huang JL; Hung CC; Chen JY
    Oral Oncol; 2012 Nov; 48(11):1152-8. PubMed ID: 22763242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field.
    Mackeyev Y; Mark C; Kumar N; Serda RE
    Acta Biomater; 2017 Apr; 53():619-630. PubMed ID: 28179157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO
    Azimee S; Rahmati M; Fahimi H; Moosavi MA
    Life Sci; 2020 May; 248():117466. PubMed ID: 32101760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.