These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21071871)

  • 21. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan.
    Datta C; Basu PS
    Microbiol Res; 2000 Jul; 155(2):123-7. PubMed ID: 10950195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.
    Ahmad F; Ahmad I; Khan MS
    Microbiol Res; 2008; 163(2):173-81. PubMed ID: 16735107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. L-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway.
    Kumavath RN; Ramana ChV; Sasikala Ch
    Biodegradation; 2010 Sep; 21(5):825-32. PubMed ID: 20217460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioproduction of indoleacetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum DC.
    Bhattacharyya RN; Basu PS
    Acta Microbiol Immunol Hung; 1997; 44(2):109-18. PubMed ID: 9330659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2.
    Mujahid M; Sasikala Ch; Ramana ChV
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1001-8. PubMed ID: 20972782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal.
    Sorkhoh NA; Ali N; Al-Awadhi H; Dashti N; Al-Mailem DM; Eliyas M; Radwan SS
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1998-2003. PubMed ID: 20833430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdependence of peat and vegetation in a tropical peat swamp forest.
    Page SE; Rieley JO; Shotyk W; Weiss D
    Philos Trans R Soc Lond B Biol Sci; 1999 Nov; 354(1391):1885-97. PubMed ID: 11605630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo.
    Ghosh S; Basu PS
    Microbiol Res; 2006; 161(4):362-6. PubMed ID: 16473504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria.
    Radwan SS; Dashti N; El-Nemr I; Khanafer M
    Int J Phytoremediation; 2007; 9(6):475-86. PubMed ID: 18246774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings.
    Legault GS; Lerat S; Nicolas P; Beaulieu C
    Phytopathology; 2011 Sep; 101(9):1045-51. PubMed ID: 21521002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42.
    Idris EE; Iglesias DJ; Talon M; Borriss R
    Mol Plant Microbe Interact; 2007 Jun; 20(6):619-26. PubMed ID: 17555270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens].
    Sun L; He L; Zhang Y; Zhang W; Wang Q; Sheng X
    Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1360-6. PubMed ID: 20069883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of auxins from tryptophan and tryptophan-precursors by fungi isolated from mycorrhizae of pine (Pinus silvestris L.).
    Strzelczyk E; Sitek JM; Kowalski S
    Acta Microbiol Pol; 1977; 26(3):255-64. PubMed ID: 70970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties.
    Ghyselinck J; Velivelli SL; Heylen K; O'Herlihy E; Franco J; Rojas M; De Vos P; Prestwich BD
    Syst Appl Microbiol; 2013 Mar; 36(2):116-27. PubMed ID: 23333025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indole-3-acetic Acid-producing bacteria are associated with cranberry stem gall.
    Vasanthakumar A; McManus PS
    Phytopathology; 2004 Nov; 94(11):1164-71. PubMed ID: 18944451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive reagents for detection of indole production by bacteria.
    James AL; Yeoman P; Rasburn JW; NG M
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Aug; 262(2):195-202. PubMed ID: 3788346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems.
    Lombard GL; Dowell VR
    J Clin Microbiol; 1983 Sep; 18(3):609-13. PubMed ID: 6630445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Synthesis of indolyl-3-lactic acid and tryptophol by Rhizobium cultivated in the presence of tryptophan].
    Rigaud J
    C R Acad Hebd Seances Acad Sci D; 1966 Jan; 262(1):100-2. PubMed ID: 4955661
    [No Abstract]   [Full Text] [Related]  

  • 40. Draft Genome Sequences of Two Antimicrobial-Producing Burkholderia sp. Strains, MSh1 and MSh2, Isolated from Malaysian Tropical Peat Swamp Forest Soil.
    Ong KS; Aw YK; Gan HM; Yule CM; Lee SM
    Genome Announc; 2014 Oct; 2(5):. PubMed ID: 25301661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.