These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 21071935)
21. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Kuroda J; Nakagawa K; Yamasaki T; Nakamura K; Takeya R; Kuribayashi F; Imajoh-Ohmi S; Igarashi K; Shibata Y; Sueishi K; Sumimoto H Genes Cells; 2005 Dec; 10(12):1139-51. PubMed ID: 16324151 [TBL] [Abstract][Full Text] [Related]
22. Preservation of kidney function with combined inhibition of NADPH oxidase and angiotensin-converting enzyme in diabetic nephropathy. Thallas-Bonke V; Coughlan MT; Bach LA; Cooper ME; Forbes JM Am J Nephrol; 2010; 32(1):73-82. PubMed ID: 20551625 [TBL] [Abstract][Full Text] [Related]
23. Suppression of mesangial cell proliferation and extracellular matrix production in streptozotocin-induced diabetic rats by Sp1 decoy oligodeoxynucleotide in vitro and in vivo. Kang JH; Chae YM; Park KK; Kim CH; Lee IS; Chang YC J Cell Biochem; 2008 Feb; 103(2):663-74. PubMed ID: 17557290 [TBL] [Abstract][Full Text] [Related]
24. Low-dose treatment with atorvastatin leads to anti-oxidative and anti-inflammatory effects in diabetes mellitus. Riad A; Du J; Stiehl S; Westermann D; Mohr Z; Sobirey M; Doehner W; Adams V; Pauschinger M; Schultheiss HP; Tschöpe C Eur J Pharmacol; 2007 Aug; 569(3):204-11. PubMed ID: 17669395 [TBL] [Abstract][Full Text] [Related]
25. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Navarro JF; Milena FJ; Mora C; León C; García J Am J Nephrol; 2006; 26(6):562-70. PubMed ID: 17167242 [TBL] [Abstract][Full Text] [Related]
26. Aryl hydrocarbon receptor-dependent induction of the NADPH oxidase subunit NCF1/p47 phox expression leading to priming of human macrophage oxidative burst. Pinel-Marie ML; Sparfel L; Desmots S; Fardel O Free Radic Biol Med; 2009 Sep; 47(6):825-34. PubMed ID: 19559082 [TBL] [Abstract][Full Text] [Related]
27. Methylglyoxal-induced fibronectin gene expression through Ras-mediated NADPH oxidase activation in renal mesangial cells. Ho C; Lee PH; Huang WJ; Hsu YC; Lin CL; Wang JY Nephrology (Carlton); 2007 Aug; 12(4):348-56. PubMed ID: 17635749 [TBL] [Abstract][Full Text] [Related]
28. miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Im YB; Jee MK; Jung JS; Choi JI; Jang JH; Kang SK Antioxid Redox Signal; 2012 May; 16(10):1046-60. PubMed ID: 22149086 [TBL] [Abstract][Full Text] [Related]
29. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Dewanjee S; Bhattacharjee N Biochem Pharmacol; 2018 Sep; 155():32-47. PubMed ID: 29940170 [TBL] [Abstract][Full Text] [Related]
30. Comment on: Thallas-Bonke et al. (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway: Diabetes 57:460-469, 2008. Yamagishi S Diabetes; 2008 Jun; 57(6):e13; author reply e14. PubMed ID: 18511442 [No Abstract] [Full Text] [Related]
31. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update. Wan C; Su H; Zhang C Oxid Med Cell Longev; 2016; 2016():7813072. PubMed ID: 27597884 [TBL] [Abstract][Full Text] [Related]
32. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. DiStefano JK; Taila M; Alvarez ML Curr Diab Rep; 2013 Aug; 13(4):582-91. PubMed ID: 23666892 [TBL] [Abstract][Full Text] [Related]
33. miRNA profiling for the early detection and clinical monitoring of diabetic kidney disease. DiStefano JK Biomark Med; 2017 Feb; 11(2):99-102. PubMed ID: 28097875 [No Abstract] [Full Text] [Related]
35. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Ben-Dov IZ; Muthukumar T; Morozov P; Mueller FB; Tuschl T; Suthanthiran M Transplantation; 2012 Dec; 94(11):1086-94. PubMed ID: 23131772 [TBL] [Abstract][Full Text] [Related]
36. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Garmaa G; Bunduc S; Kói T; Hegyi P; Csupor D; Ganbat D; Dembrovszky F; Meznerics FA; Nasirzadeh A; Barbagallo C; Kökény G Noncoding RNA; 2024 May; 10(3):. PubMed ID: 38804362 [TBL] [Abstract][Full Text] [Related]
37. Dysregulation of miR-25-3p in Diabetic Nephropathy and Its Role in Inflammatory Response. Chen H; Tian T; Wang D Biochem Genet; 2024 Apr; ():. PubMed ID: 38602597 [TBL] [Abstract][Full Text] [Related]
38. Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury. Li L; Shen Y; Tang Z; Yang Y; Fu Z; Ni D; Cai X Exploration (Beijing); 2023 Dec; 3(6):20220148. PubMed ID: 38264689 [TBL] [Abstract][Full Text] [Related]
39. The phosphokinase activity of IRE1ɑ prevents the oxidative stress injury through miR-25/Nox4 pathway after ICH. Liao Y; Huang J; Wang Z; Yang Z; Shu Y; Gan S; Wang Z; Lu W CNS Neurosci Ther; 2024 Apr; 30(4):e14537. PubMed ID: 37994671 [TBL] [Abstract][Full Text] [Related]
40. MircroRNA-92b as a negative regulator of the TGF-β signaling by targeting the type I receptor. Yang S; Jiang K; Li L; Xiang J; Li Y; Kang L; Yang G; Liang Z iScience; 2023 Nov; 26(11):108131. PubMed ID: 37867958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]