These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21072368)
1. Effects of large-scale amino acid substitution in the polypeptide tether connecting the heme and molybdenum domains on catalysis in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Davis AC; Tollin G; Enemark JH Metallomics; 2010 Nov; 2(11):766-70. PubMed ID: 21072368 [TBL] [Abstract][Full Text] [Related]
2. Effects of interdomain tether length and flexibility on the kinetics of intramolecular electron transfer in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Emesh S; Astashkin AV; Rajapakshe A; Berry RE; Tollin G; Enemark JH Biochemistry; 2010 Feb; 49(6):1290-6. PubMed ID: 20063894 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. Enemark JH J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Johnson-Winters K; Tollin G; Enemark JH Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399 [TBL] [Abstract][Full Text] [Related]
5. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Davis AC; Cornelison MJ; Meyers KT; Rajapakshe A; Berry RE; Tollin G; Enemark JH Dalton Trans; 2013 Mar; 42(9):3043-9. PubMed ID: 22975842 [TBL] [Abstract][Full Text] [Related]
6. Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids. Rajapakshe A; Meyers KT; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2012 Mar; 17(3):345-52. PubMed ID: 22057690 [TBL] [Abstract][Full Text] [Related]
7. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide. Wang J; Krizowski S; Fischer-Schrader K; Niks D; Tejero J; Sparacino-Watkins C; Wang L; Ragireddy V; Frizzell S; Kelley EE; Zhang Y; Basu P; Hille R; Schwarz G; Gladwin MT Antioxid Redox Signal; 2015 Aug; 23(4):283-94. PubMed ID: 25314640 [TBL] [Abstract][Full Text] [Related]
8. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Workun GJ; Moquin K; Rothery RA; Weiner JH Microbiol Mol Biol Rev; 2008 Jun; 72(2):228-48, table of contents. PubMed ID: 18535145 [TBL] [Abstract][Full Text] [Related]
11. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer. Feng C; Wilson HL; Tollin G; Astashkin AV; Hazzard JT; Rajagopalan KV; Enemark JH Biochemistry; 2005 Oct; 44(42):13734-43. PubMed ID: 16229463 [TBL] [Abstract][Full Text] [Related]
12. Determination of the distance between the Mo(V) and Fe(III) heme centers of wild type human sulfite oxidase by pulsed EPR spectroscopy. Astashkin AV; Rajapakshe A; Cornelison MJ; Johnson-Winters K; Enemark JH J Phys Chem B; 2012 Feb; 116(6):1942-50. PubMed ID: 22229742 [TBL] [Abstract][Full Text] [Related]
13. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH J Biol Chem; 2003 Jan; 278(5):2913-20. PubMed ID: 12424234 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular electron transfer in a bacterial sulfite dehydrogenase. Feng C; Kappler U; Tollin G; Enemark JH J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631 [TBL] [Abstract][Full Text] [Related]
15. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase. Mutus B Biochem J; 2019 Jul; 476(13):1955-1956. PubMed ID: 31308158 [TBL] [Abstract][Full Text] [Related]
16. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. Johnson-Winters K; Davis AC; Arnold AR; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2013 Aug; 18(6):645-53. PubMed ID: 23779234 [TBL] [Abstract][Full Text] [Related]
17. A novel thermostable sulfite oxidase from Thermus thermophilus: characterization of the enzyme, gene cloning and expression in Escherichia coli. Di Salle A; D'Errico G; La Cara F; Cannio R; Rossi M Extremophiles; 2006 Dec; 10(6):587-98. PubMed ID: 16830073 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism of intramolecular electron transfer in dimeric sulfite oxidase. Eh M; Kaczmarek AT; Schwarz G; Bender D J Biol Chem; 2022 Mar; 298(3):101668. PubMed ID: 35120924 [TBL] [Abstract][Full Text] [Related]
19. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. Eilers T; Schwarz G; Brinkmann H; Witt C; Richter T; Nieder J; Koch B; Hille R; Hänsch R; Mendel RR J Biol Chem; 2001 Dec; 276(50):46989-94. PubMed ID: 11598126 [TBL] [Abstract][Full Text] [Related]
20. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]