These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21072569)

  • 1. Alkaline degradation study of linear and network poly(ε-caprolactone).
    Meseguer-Dueñas JM; Más-Estellés J; Castilla-Cortázar I; Escobar Ivirico JL; Vidaurre A
    J Mater Sci Mater Med; 2011 Jan; 22(1):11-8. PubMed ID: 21072569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical characterization of polycaprolactone scaffolds.
    Más Estellés J; Vidaurre A; Meseguer Dueñas JM; Castilla Cortázar I
    J Mater Sci Mater Med; 2008 Jan; 19(1):189-95. PubMed ID: 17597379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo implantation of 2,2'-bis(oxazoline)-linked poly-epsilon-caprolactone: proof for enzyme sensitive surface erosion and biocompatibility.
    Pulkkinen M; Malin M; Böhm J; Tarvainen T; Wirth T; Seppälä J; Järvinen K
    Eur J Pharm Sci; 2009 Feb; 36(2-3):310-9. PubMed ID: 19022379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation Behavior of 3D Porous Polydioxanone-b-Polycaprolactone Scaffolds Fabricated Using the Melt-Molding Particulate-Leaching Method.
    Oh SH; Park SC; Kim HK; Koh YJ; Lee JH; Lee MC; Lee JH
    J Biomater Sci Polym Ed; 2011; 22(1-3):225-37. PubMed ID: 20557697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective enzymatic degradation of poly(epsilon-caprolactone) containing multiblock copolymers.
    Kulkarni A; Reiche J; Hartmann J; Kratz K; Lendlein A
    Eur J Pharm Biopharm; 2008 Jan; 68(1):46-56. PubMed ID: 17884401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties.
    Ferreira J; Gloria A; Cometa S; Coelho JFJ; Domingos M
    J Appl Biomater Funct Mater; 2017 Jul; 15(3):e185-e195. PubMed ID: 28623631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel degradable polycaprolactone networks for tissue engineering.
    Kweon H; Yoo MK; Park IK; Kim TH; Lee HC; Lee HS; Oh JS; Akaike T; Cho CS
    Biomaterials; 2003 Feb; 24(5):801-8. PubMed ID: 12485798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase.
    Shi K; Jing J; Song L; Su T; Wang Z
    Int J Biol Macromol; 2020 Feb; 144():183-189. PubMed ID: 31843602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro degradation characteristics of poly(e-caprolactone)/poly(glycolic acid) scaffolds fabricated via solid-state cryomilling.
    Jonnalagadda JB; Rivero IV; Warzywoda J
    J Biomater Appl; 2015 Oct; 30(4):472-83. PubMed ID: 26152115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals.
    Hao J; Liu Y; Zhou S; Li Z; Deng X
    Biomaterials; 2003 Apr; 24(9):1531-9. PubMed ID: 12559813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin.
    Puga AM; Rey-Rico A; Magariños B; Alvarez-Lorenzo C; Concheiro A
    Acta Biomater; 2012 Apr; 8(4):1507-18. PubMed ID: 22251935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, crystallization, and molecular mobility in poly(ε-caprolactone) copolyesters of different architectures for biomedical applications studied by calorimetry and dielectric spectroscopy.
    Christodoulou E; Klonos PA; Tsachouridis K; Zamboulis A; Kyritsis A; Bikiaris DN
    Soft Matter; 2020 Sep; 16(35):8187-8201. PubMed ID: 32789409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application.
    Ranjbar-Mohammadi M; Bahrami SH
    Int J Biol Macromol; 2016 Mar; 84():448-56. PubMed ID: 26706845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization, mechanical properties, and controlled enzymatic degradation of biodegradable poly(epsilon-caprolactone)/multi-walled carbon nanotubes nanocomposites.
    Qiu Z; Wang H; Xu C
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7884-93. PubMed ID: 22097501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.