BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21072774)

  • 1. Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum.
    Skalicka-Woźniak K; Los R; Głowniak K; Malm A
    Chem Biodivers; 2010 Nov; 7(11):2748-54. PubMed ID: 21072774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.
    Nobmann P; Smith A; Dunne J; Henehan G; Bourke P
    Int J Food Microbiol; 2009 Jan; 128(3):440-5. PubMed ID: 19012983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile compounds in fruits of Peucedanum cervaria (Lap.) L.
    Skalicka-Wozniak K; Los R; Glowniak K; Malm A
    Chem Biodivers; 2009 Jul; 6(7):1087-92. PubMed ID: 19623554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical composition and antimicrobial activity of the extracts of Kefe cumin (Laser trilobum L.) fruits from different regions.
    Parlatan A; Sariçoban C; Ozcan MM
    Int J Food Sci Nutr; 2009 Nov; 60(7):606-17. PubMed ID: 19817640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of novel fatty acid analogs of cholesterol: in vitro antimicrobial activity.
    Banday MR; Farshori NN; Ahmad A; Khan AU; Rauf A
    Eur J Med Chem; 2010 Apr; 45(4):1459-64. PubMed ID: 20106564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts.
    Klancnik A; Piskernik S; Jersek B; Mozina SS
    J Microbiol Methods; 2010 May; 81(2):121-6. PubMed ID: 20171250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological activity and fatty acid composition of Caesar's mushroom.
    Doğan HH; Akbaş G
    Pharm Biol; 2013 Jul; 51(7):863-71. PubMed ID: 23527891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of
    Widelski J; Luca SV; Skiba A; Chinou I; Marcourt L; Wolfender JL; Skalicka-Wozniak K
    Molecules; 2018 May; 23(5):. PubMed ID: 29783770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102).
    Biedenbach DJ; Rhomberg PR; Mendes RE; Jones RN
    Diagn Microbiol Infect Dis; 2010 Mar; 66(3):301-7. PubMed ID: 20159376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New thioureides of 2-(4-methylphenoxymethyl) benzoic acid with antimicrobial activity.
    Drăcea O; Larion C; Chifiriuc MC; Raut I; Limban C; Niţulescu GM; Bădiceanu CD; Israil AM
    Roum Arch Microbiol Immunol; 2008; 67(3-4):92-7. PubMed ID: 19496477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial effects of Quercus ilex L. extract.
    Güllüce M; Adigüzel A; Oğütçü H; Sengül M; Karaman I; Sahin F
    Phytother Res; 2004 Mar; 18(3):208-11. PubMed ID: 15103667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.
    Sati A; Sati SC; Sati N; Sati OP
    Nat Prod Res; 2017 Mar; 31(6):713-717. PubMed ID: 27500309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of some Australian plant species from the genus Eremophila.
    Ndi CP; Semple SJ; Griesser HJ; Barton MD
    J Basic Microbiol; 2007 Apr; 47(2):158-64. PubMed ID: 17440918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of extracts of Anthocleista djalonensis, Nauclea latifolia and Uvaria afzalii for activity against bacterial isolates from cases of non-gonococcal urethritis.
    Okoli AS; Iroegbu CU
    J Ethnopharmacol; 2004 May; 92(1):135-44. PubMed ID: 15099860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activities of the CH2Cl2-CH3OH (1:1) extracts and compounds from the roots and fruits of Pycnanthus angolensis (Myristicaceae).
    Kuete V; Nono EC; Mkounga P; Marat K; Hultin PG; Nkengfack AE
    Nat Prod Res; 2011 Feb; 25(4):432-43. PubMed ID: 21328137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens.
    Nasar-Abbas SM; Halkman AK
    Int J Food Microbiol; 2004 Dec; 97(1):63-9. PubMed ID: 15527919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition of the essential oils from Peucedanum cervaria and P. alsaticum growing wild in the urban area of Vienna (Austria).
    Chizzola R
    Nat Prod Commun; 2012 Nov; 7(11):1515-8. PubMed ID: 23285820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hydrodistillation and headspace solid-phase microextraction techniques for antibacterial volatile compounds from the fruits of Seseli libanotis.
    Skalicka-Wozniak K; Los R; Glowniak K; Malm A
    Nat Prod Commun; 2010 Sep; 5(9):1427-30. PubMed ID: 20923002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical compositions and antimicrobial activities of essential oils extracted from Acanthopanax brachypus.
    Hu H; Zheng X; Hu H; Li Y
    Arch Pharm Res; 2009 May; 32(5):699-710. PubMed ID: 19471884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial and antifungal activities of extracts of combretum molle.
    Asres K; Mazumder A; Bucar F
    Ethiop Med J; 2006 Jul; 44(3):269-77. PubMed ID: 17447394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.