BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21072861)

  • 1. Metabolic changes of Acidithiobacillus caldus under Cu²(+) stress.
    Xia L; Yin C; Cai L; Qiu G; Qin W; Peng B; Liu J
    J Basic Microbiol; 2010 Dec; 50(6):591-8. PubMed ID: 21072861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of L-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus.
    He Z; Gao F; Zhong H; Hu Y
    Bioresour Technol; 2009 Feb; 100(3):1383-7. PubMed ID: 18829304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus.
    Feng S; Hou S; Cui Y; Tong Y; Yang H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):21-33. PubMed ID: 31758413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.
    Almárcegui RJ; Navarro CA; Paradela A; Albar JP; von Bernath D; Jerez CA
    Res Microbiol; 2014 Nov; 165(9):761-72. PubMed ID: 25041950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd²⁺ stress: evidence from transcriptional, enzymatic, and metabolic profiles.
    Zheng C; Chen M; Tao Z; Zhang L; Zhang XF; Wang JY; Liu J
    Extremophiles; 2015 Mar; 19(2):429-36. PubMed ID: 25575615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile.
    Sugio T; Wakabayashi M; Kanao T; Takeuchi F
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):998-1004. PubMed ID: 18391470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.
    Chen L; Ren Y; Lin J; Liu X; Pang X; Lin J
    PLoS One; 2012; 7(9):e39470. PubMed ID: 22984393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in Fe2+-producing activity during growth of Acidithiobacillus ferrooxidans ATCC23270 on sulfur.
    Sugio T; Taha TM; Kanao T; Takeuchi F
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2663-9. PubMed ID: 17986795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Insights into a Novel Cu(I)-Sensitive ArsR/SmtB Family Repressor in Extremophile Acidithiobacillus caldus.
    Qiu Y; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2023 Jan; 89(1):e0126622. PubMed ID: 36602357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.
    Hassan SH; Van Ginkel SW; Kim SM; Yoon SH; Joo JH; Shin BS; Jeon BH; Bae W; Oh SE
    J Microbiol Methods; 2010 Aug; 82(2):151-5. PubMed ID: 20580751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13.
    Aston JE; Peyton BM; Lee BD; Apel WA
    Environ Toxicol Chem; 2010 Dec; 29(12):2669-75. PubMed ID: 20931606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus.
    Wu W; Pang X; Lin J; Liu X; Wang R; Lin J; Chen L
    PLoS One; 2017; 12(9):e0183668. PubMed ID: 28873420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Insights into the Copper-Sensitive Operon Repressor in Acidithiobacillus caldus.
    Hou S; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2021 Jul; 87(16):e0066021. PubMed ID: 34085855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of recombinant mercury resistant Acidithiobacillus caldus.
    Chen D; Lin J; Che Y; Liu X; Lin J
    Microbiol Res; 2011 Oct; 166(7):515-20. PubMed ID: 21239150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans.
    Ferraz LF; Verde LC; Reis FC; Alexandrino F; Felício AP; Novo MT; Garcia O; Ottoboni LM
    Arch Microbiol; 2010 Jul; 192(7):531-40. PubMed ID: 20480358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans.
    Zhan Y; Yang M; Zhang S; Zhao D; Duan J; Wang W; Yan L
    World J Microbiol Biotechnol; 2019 Mar; 35(4):60. PubMed ID: 30919119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological oxidation of metallic copper by Acidithiobacillus ferrooxidans.
    Lilova K; Karamanev D; Flemming RL; Karamaneva T
    Biotechnol Bioeng; 2007 Jun; 97(2):308-16. PubMed ID: 16937398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The σ
    Li LF; Fu LJ; Lin JQ; Pang X; Liu XM; Wang R; Wang ZB; Lin JQ; Chen LX
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2079-2092. PubMed ID: 27966049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.
    Huang Z; Feng S; Tong Y; Yang H
    J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation.
    Dopson M; Lindström EB; Hallberg KB
    Extremophiles; 2002 Apr; 6(2):123-9. PubMed ID: 12013432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.