These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 21073209)
1. Application of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation to periodic systems. Katouda M; Nagase S J Chem Phys; 2010 Nov; 133(18):184103. PubMed ID: 21073209 [TBL] [Abstract][Full Text] [Related]
2. Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. Izmaylov AF; Scuseria GE Phys Chem Chem Phys; 2008 Jun; 10(23):3421-9. PubMed ID: 18535725 [TBL] [Abstract][Full Text] [Related]
3. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. Klopper W J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119 [TBL] [Abstract][Full Text] [Related]
4. Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. Hättig C; Hellweg A; Köhn A Phys Chem Chem Phys; 2006 Mar; 8(10):1159-69. PubMed ID: 16633596 [TBL] [Abstract][Full Text] [Related]
6. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. Marsman M; Grüneis A; Paier J; Kresse G J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904 [TBL] [Abstract][Full Text] [Related]
7. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361 [TBL] [Abstract][Full Text] [Related]
8. Stochastic Formulation of the Resolution of Identity: Application to Second Order Møller-Plesset Perturbation Theory. Takeshita TY; de Jong WA; Neuhauser D; Baer R; Rabani E J Chem Theory Comput; 2017 Oct; 13(10):4605-4610. PubMed ID: 28914534 [TBL] [Abstract][Full Text] [Related]
9. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Del Ben M; Hutter J; VandeVondele J J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860 [TBL] [Abstract][Full Text] [Related]
10. General orbital invariant MP2-F12 theory. Werner HJ; Adler TB; Manby FR J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584 [TBL] [Abstract][Full Text] [Related]
12. Dual-basis second-order Moller-Plesset perturbation theory: A reduced-cost reference for correlation calculations. Steele RP; DiStasio RA; Shao Y; Kong J; Head-Gordon M J Chem Phys; 2006 Aug; 125(7):074108. PubMed ID: 16942323 [TBL] [Abstract][Full Text] [Related]
13. Optimization of RI-MP2 auxiliary basis functions for 6-31G** and 6-311G** basis sets for first-, second-, and third-row elements. Tanaka M; Katouda M; Nagase S J Comput Chem; 2013 Nov; 34(29):2568-75. PubMed ID: 24078462 [TBL] [Abstract][Full Text] [Related]
14. Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory. Polly R; Werner HJ; Dahle P; Taylor PR J Chem Phys; 2006 Jun; 124(23):234107. PubMed ID: 16821907 [TBL] [Abstract][Full Text] [Related]
15. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. Fedorov DG; Kitaura K J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845 [TBL] [Abstract][Full Text] [Related]
17. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
18. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. Valeev EF; Janssen CL J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663 [TBL] [Abstract][Full Text] [Related]
19. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory. Bozkaya U J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413 [TBL] [Abstract][Full Text] [Related]
20. A kinetic energy fitting metric for resolution of the identity second-order Møller-Plesset perturbation theory. Lambrecht DS; Brandhorst K; Miller WH; McCurdy CW; Head-Gordon M J Phys Chem A; 2011 Apr; 115(13):2794-801. PubMed ID: 21391690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]