These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 21073260)
1. On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices. Arias-Londoño JD; Godino-Llorente JI; Markaki M; Stylianou Y Logoped Phoniatr Vocol; 2011 Jul; 36(2):60-9. PubMed ID: 21073260 [TBL] [Abstract][Full Text] [Related]
2. Towards objective evaluation of perceived roughness and breathiness: an approach based on mel-frequency cepstral analysis. Sáenz-Lechón N; Fraile R; Godino-Llorente JI; Fernández-Baíllo R; Osma-Ruiz V; Gutiérrez-Arriola JM; Arias-Londoño JD Logoped Phoniatr Vocol; 2011 Jul; 36(2):52-9. PubMed ID: 20849245 [TBL] [Abstract][Full Text] [Related]
3. Multidirectional regression (MDR)-based features for automatic voice disorder detection. Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748 [TBL] [Abstract][Full Text] [Related]
4. Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients. Arias-Londoño JD; Godino-Llorente JI; Sáenz-Lechón N; Osma-Ruiz V; Castellanos-Domínguez G IEEE Trans Biomed Eng; 2011 Feb; 58(2):370-9. PubMed ID: 21257362 [TBL] [Abstract][Full Text] [Related]
5. Discrimination between pathological and normal voices using GMM-SVM approach. Wang X; Zhang J; Yan Y J Voice; 2011 Jan; 25(1):38-43. PubMed ID: 20137892 [TBL] [Abstract][Full Text] [Related]
6. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model. Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263 [TBL] [Abstract][Full Text] [Related]
7. Validity of jitter measures in non-quasi-periodic voices. Part I: perceptual and computer performances in cycle pattern recognition. Dejonckere P; Schoentgen J; Giordano A; Fraj S; Bocchi L; Manfredi C Logoped Phoniatr Vocol; 2011 Jul; 36(2):70-7. PubMed ID: 21689056 [TBL] [Abstract][Full Text] [Related]
8. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors. Godino-Llorente JI; Gómez-Vilda P IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711 [TBL] [Abstract][Full Text] [Related]
9. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology? Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756 [TBL] [Abstract][Full Text] [Related]
10. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise. Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247 [TBL] [Abstract][Full Text] [Related]
11. The Effect of the MFCC Frame Length in Automatic Voice Pathology Detection. Tirronen S; Kadiri SR; Alku P J Voice; 2024 Sep; 38(5):975-982. PubMed ID: 35490081 [TBL] [Abstract][Full Text] [Related]
12. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis. Behroozmand R; Almasganj F Comput Biol Med; 2007 Apr; 37(4):474-85. PubMed ID: 17034780 [TBL] [Abstract][Full Text] [Related]
13. Using modulation spectra for voice pathology detection and classification. Markaki M; Stylianou Y Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2514-7. PubMed ID: 19964970 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions. Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z J Voice; 2017 Jan; 31(1):3-15. PubMed ID: 26992554 [TBL] [Abstract][Full Text] [Related]
15. An Investigation of Multidimensional Voice Program Parameters in Three Different Databases for Voice Pathology Detection and Classification. Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z; Mesallam TA; Farahat M; Malki KH; Bencherif MA J Voice; 2017 Jan; 31(1):113.e9-113.e18. PubMed ID: 27105857 [TBL] [Abstract][Full Text] [Related]
16. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach. Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049 [TBL] [Abstract][Full Text] [Related]
17. Static features in real-time recognition of isolated vowels at high pitch. Ferreira AJ J Acoust Soc Am; 2007 Oct; 122(4):2389-404. PubMed ID: 17902873 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of pathological voices using a time-frequency approach. Umapathy K; Krishnan S; Parsa V; Jamieson DG IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572 [TBL] [Abstract][Full Text] [Related]
19. Vibrato and tremor extent spectrum: algorithm and applications. Vieira MN; Silva JE; Yehia HC J Acoust Soc Am; 2011 Jul; 130(1):EL1-7. PubMed ID: 21786861 [TBL] [Abstract][Full Text] [Related]
20. Automatic modeling of acoustic perception of breathiness in pathological voices. Castillo-Guerra E; Ruíz A IEEE Trans Biomed Eng; 2009 Apr; 56(4):932-40. PubMed ID: 19423423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]