BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 21073789)

  • 1. Time-resolved diffuse optical spectroscopy: a differential absorption approach.
    Taroni P; Bassi A; Spinelli L; Cubeddu R; Pifferi A
    Appl Spectrosc; 2010 Nov; 64(11):1220-6. PubMed ID: 21073789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approach for non-destructive pigment analysis in model liquids and carrots by means of time-of-flight and multi-wavelength remittance readings.
    Zude M; Spinelli L; Torricelli A
    Anal Chim Acta; 2008 Aug; 623(2):204-12. PubMed ID: 18620925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modified Beer-Lambert law revisited.
    Kocsis L; Herman P; Eke A
    Phys Med Biol; 2006 Mar; 51(5):N91-8. PubMed ID: 16481677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chi2 analysis for estimating the accuracy of optical properties derived from time resolved diffuse-reflectance.
    Guyon L; da Silva A; Planat-Chrétien A; Rizo P; Dinten JM
    Opt Express; 2009 Oct; 17(22):20521-37. PubMed ID: 19997281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.
    Bouchard JP; Veilleux I; Jedidi R; Noiseux I; Fortin M; Mermut O
    Opt Express; 2010 May; 18(11):11495-507. PubMed ID: 20589010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling scattering and absorption of turbid samples using a simple empirical relation between coefficients of the Kubelka-Munk and radiative transfer theories.
    Gaonkar HA; Kumar D; Ramasubramaniam R; Roy A
    Appl Opt; 2014 May; 53(13):2892-8. PubMed ID: 24921877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy.
    Liu H; Miwa M; Beauvoit B; Wang NG; Chance B
    Anal Biochem; 1993 Sep; 213(2):378-85. PubMed ID: 8238914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MADSTRESS: a linear approach for evaluating scattering and absorption coefficients of samples measured using time-resolved spectroscopy in reflection.
    Chauchard F; Roger JM; Bellon-Maurel V; Abrahamsson C; Andersson-Engels S; Svanberg S
    Appl Spectrosc; 2005 Oct; 59(10):1229-35. PubMed ID: 18028619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection.
    Langridge JM; Ball SM; Shillings AJ; Jones RL
    Rev Sci Instrum; 2008 Dec; 79(12):123110. PubMed ID: 19123548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2005 Nov; 109(43):20331-8. PubMed ID: 16853630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.
    Stavn RH
    Appl Opt; 1988 Jan; 27(2):222-31. PubMed ID: 20523584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical quantitation of absorbers in variously shaped turbid media based on the microscopic Beer-Lambert law. A new approach to optical computerized tomography.
    Tsuchiya Y; Urakami T
    Ann N Y Acad Sci; 1998 Feb; 838():75-94. PubMed ID: 9511797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics.
    Boas DA; Gaudette T; Strangman G; Cheng X; Marota JJ; Mandeville JB
    Neuroimage; 2001 Jan; 13(1):76-90. PubMed ID: 11133311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.
    Gobrecht A; Bendoula R; Roger JM; Bellon-Maurel V
    Anal Chim Acta; 2015 Jan; 853():486-494. PubMed ID: 25467494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.
    Dzhongova E; Harwood CR; Thennadil SN
    Appl Spectrosc; 2009 Jan; 63(1):25-32. PubMed ID: 19146716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [DWT-iPLS applied in the infrared diffuse reflection spectrum of hydrocarbon source rocks].
    Song N; Xu XX; Wu ZC; Zhang CZ; Wang B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1846-50. PubMed ID: 18975817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli.
    Alupoaei CE; García-Rubio LH
    Biotechnol Bioeng; 2004 Apr; 86(2):163-7. PubMed ID: 15052635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of fiducial wavelength method in processing spectra of turbid media].
    Luo YH; Gu XY; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1416-8. PubMed ID: 17058935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber.
    Abrahamsson C; Svensson T; Svanberg S; Andersson-Engels S; Johansson J; Folestad S
    Opt Express; 2004 Aug; 12(17):4103-12. PubMed ID: 19483952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandpass effects in time-resolved diffuse spectroscopy.
    Farina A; Bassi A; Pifferi A; Taroni P; Comelli D; Spinelli L; Cubeddu R
    Appl Spectrosc; 2009 Jan; 63(1):48-56. PubMed ID: 19146718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.