These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 21073855)
1. On the role of anionic lipids in charged protein interactions with membranes. Vorobyov I; Allen TW Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855 [TBL] [Abstract][Full Text] [Related]
2. Role of interactions at the lipid-water interface for domain formation. Gawrisch K; Barry JA; Holte LL; Sinnwell T; Bergelson LD; Ferretti JA Mol Membr Biol; 1995; 12(1):83-8. PubMed ID: 7767388 [TBL] [Abstract][Full Text] [Related]
3. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
4. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
5. The role of membrane thickness in charged protein-lipid interactions. Li LB; Vorobyov I; Allen TW Biochim Biophys Acta; 2012 Feb; 1818(2):135-45. PubMed ID: 22063722 [TBL] [Abstract][Full Text] [Related]
6. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
7. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. Hoernke M; Schwieger C; Kerth A; Blume A Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675 [TBL] [Abstract][Full Text] [Related]
8. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046 [TBL] [Abstract][Full Text] [Related]
9. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
10. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Khan HM; He T; Fuglebakk E; Grauffel C; Yang B; Roberts MF; Gershenson A; Reuter N Biophys J; 2016 Mar; 110(6):1367-78. PubMed ID: 27028646 [TBL] [Abstract][Full Text] [Related]
11. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
12. Lipid modulation of early G protein-coupled receptor signalling events. Dijkman PM; Watts A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2889-97. PubMed ID: 26275588 [TBL] [Abstract][Full Text] [Related]
13. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. Zhang L; Rajendram M; Weibel DB; Yethiraj A; Cui Q J Phys Chem B; 2016 Aug; 120(33):8424-37. PubMed ID: 27095675 [TBL] [Abstract][Full Text] [Related]
14. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding. Heimburg T; Angerstein B; Marsh D Biophys J; 1999 May; 76(5):2575-86. PubMed ID: 10233072 [TBL] [Abstract][Full Text] [Related]
15. Protein/lipid interaction in the bacterial photosynthetic reaction center: phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Nagy L; Milano F; Dorogi M; Agostiano A; Laczkó G; Szebényi K; Váró G; Trotta M; Maróti P Biochemistry; 2004 Oct; 43(40):12913-23. PubMed ID: 15461464 [TBL] [Abstract][Full Text] [Related]
16. The different interactions of lysine and arginine side chains with lipid membranes. Li L; Vorobyov I; Allen TW J Phys Chem B; 2013 Oct; 117(40):11906-20. PubMed ID: 24007457 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
18. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Zhao W; Róg T; Gurtovenko AA; Vattulainen I; Karttunen M Biophys J; 2007 Feb; 92(4):1114-24. PubMed ID: 17114222 [TBL] [Abstract][Full Text] [Related]
19. Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267 [TBL] [Abstract][Full Text] [Related]
20. Effects of lipid structure on the state of aggregation of potassium channel KcsA. Bolivar JH; East JM; Marsh D; Lee AG Biochemistry; 2012 Jul; 51(30):6010-6. PubMed ID: 22762292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]