These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21073955)

  • 1. Recent advances in macromolecular hydrodynamic modeling.
    Aragon SR
    Methods; 2011 May; 54(1):101-14. PubMed ID: 21073955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise boundary element computation of protein transport properties: Diffusion tensors, specific volume, and hydration.
    Aragon S; Hahn DK
    Biophys J; 2006 Sep; 91(5):1591-603. PubMed ID: 16714342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody.
    Brandt JP; Patapoff TW; Aragon SR
    Biophys J; 2010 Aug; 99(3):905-13. PubMed ID: 20682269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties.
    Ortega A; Amorós D; García de la Torre J
    Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.
    Patel TR; Chojnowski G; Astha ; Koul A; McKenna SA; Bujnicki JM
    Methods; 2017 Apr; 118-119():146-162. PubMed ID: 27939506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic Viscosity of Proteins and Platonic Solids by Boundary Element Methods.
    Hahn DK; Aragon SR
    J Chem Theory Comput; 2006 Sep; 2(5):1416-28. PubMed ID: 26626849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A precise boundary element method for macromolecular transport properties.
    Aragon S
    J Comput Chem; 2004 Jul; 25(9):1191-205. PubMed ID: 15116362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite.
    Brookes E; Rocco M
    Eur Biophys J; 2018 Oct; 47(7):855-864. PubMed ID: 29594411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
    García de la Torre J; Hernández Cifre JG
    J Mol Biol; 2020 Apr; 432(9):2930-2948. PubMed ID: 31877325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the thin-shell formulation to the numerical modeling of Stern layer in biomolecular electrostatics.
    Manzin A; Bottauscio O; Ansalone DP
    J Comput Chem; 2011 Nov; 32(14):3105-13. PubMed ID: 21815178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology.
    Gillis RB; Rowe AJ; Adams GG; Harding SE
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):142-57. PubMed ID: 25686159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment.
    Kent A; Jha AK; Fitzgerald JE; Freed KF
    J Phys Chem B; 2008 May; 112(19):6175-86. PubMed ID: 18348560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment.
    Makarov V; Pettitt BM; Feig M
    Acc Chem Res; 2002 Jun; 35(6):376-84. PubMed ID: 12069622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.