These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21074561)

  • 21. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve.
    Branner A; Stein RB; Fernandez E; Aoyagi Y; Normann RA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):146-57. PubMed ID: 14723504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The state of the contralateral motor center of the rat gastrocnemius muscle after unilateral damage of sciatic nerve].
    Eremeev AA; Pleshchinskiĭ IN; Baltina TV; Eremeev AM
    Ross Fiziol Zh Im I M Sechenova; 2011 Mar; 97(3):308-15. PubMed ID: 21675206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the reference electrode on the compound muscle action potential of the flexor digiti minimi brevis.
    Takahashi N; Robinson LR
    Am J Phys Med Rehabil; 2010 Jul; 89(7):570-5. PubMed ID: 20463563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carpal tunnel syndrome: comparison of the compound muscle action potentials recorded at the thenar region from ulnar and median nerve stimulation.
    Wee AS
    Electromyogr Clin Neurophysiol; 2006; 46(2):123-6. PubMed ID: 16796002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotransmission Recovery by Melatonin Measured by CMAP.
    Negro S; Stazi M; Rigoni M; Megighian A
    Methods Mol Biol; 2022; 2550():413-423. PubMed ID: 36180709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facial nerve action potentials: a study to assess waveform reliability.
    Axon PR; Ramsden RT
    Am J Otol; 2000 Nov; 21(6):842-6. PubMed ID: 11078073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for measuring compound muscle action potentials in facial palsy: a preliminary study.
    Haginomori S; Wada S; Takamaki A; Nonaka R; Takenaka H; Takubo T
    Muscle Nerve; 2008 Jun; 37(6):764-9. PubMed ID: 18506721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Counted cycles method to quantify the onset response in high-frequency peripheral nerve block.
    Foldes EL; Ackermann D; Bhadra N; Kilgore KL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():614-7. PubMed ID: 19963719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats.
    Branner A; Normann RA
    Brain Res Bull; 2000 Mar; 51(4):293-306. PubMed ID: 10704779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noninvasive Ultrasound of the Tibial Muscle for Longitudinal Analysis of Nerve Regeneration in Rats.
    Hundepool CA; Nijhuis THJ; Rbia N; Bulstra LF; Selles RW; Hovius SER
    Plast Reconstr Surg; 2015 Nov; 136(5):633e-639e. PubMed ID: 26505720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor Nerve Recovery in a Rabbit Model: Description and Validation of a Noninvasive Ultrasound Technique.
    Bulstra LF; Hundepool CA; Friedrich PF; Nijhuis TH; Bishop AT; Shin AY
    J Hand Surg Am; 2016 Jan; 41(1):27-33. PubMed ID: 26710731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the Crushed Sciatic Nerve and Denervated Muscle with Multimodality Ultrasound Techniques: An Animal Study.
    Zhu Y; Jin Z; Luo Y; Wang Y; Peng N; Peng J; Wang Y; Yu B; Lu C; Zhang S
    Ultrasound Med Biol; 2020 Feb; 46(2):377-392. PubMed ID: 31699548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.
    Arnold WD; Sheth KA; Wier CG; Kissel JT; Burghes AH; Kolb SJ
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accessory nerve stimulation: motor response of the sternocleidomastoid muscle.
    Pinto S; de Carvalho M
    Neurophysiol Clin; 2008 Apr; 38(2):133-6. PubMed ID: 18423334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-dependent thenar compound muscle action potential: Comparison between surface and needle recordings.
    Yue S; Yue Q; Hale T; Knecht A
    J Back Musculoskelet Rehabil; 2019; 32(6):841-845. PubMed ID: 30883332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between the size of the recording electrodes and morphology of the compound muscle action potentials.
    Wee AS; Ashley RA
    Electromyogr Clin Neurophysiol; 1990; 30(3):165-8. PubMed ID: 2351092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasound-guided needle positioning in sensory nerve conduction study of the sural nerve.
    Kamm CP; Scheidegger O; Rösler KM
    Clin Neurophysiol; 2009 Jul; 120(7):1342-5. PubMed ID: 19464944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of muscle-derived signal interference during monopolar needle electromyography of a peripheral nerve interface in the rat hind limb.
    Woo SL; Urbanchek MG; Leach MK; Moon JD; Cederna P; Langhals NB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4382-5. PubMed ID: 25570963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.