These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 21074823)
1. Evaluation of a novel high throughput screening tool for relative emissions of industrial chemicals used in chemical products. Undeman E; Fischer S; McLachlan MS Chemosphere; 2011 Feb; 82(7):996-1001. PubMed ID: 21074823 [TBL] [Abstract][Full Text] [Related]
2. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure. Breivik K; Arnot JA; Brown TN; McLachlan MS; Wania F J Environ Monit; 2012 Aug; 14(8):2028-37. PubMed ID: 22785348 [TBL] [Abstract][Full Text] [Related]
3. Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites. Botalova O; Schwarzbauer J; al Sandouk N Water Res; 2011 Jun; 45(12):3653-64. PubMed ID: 21565380 [TBL] [Abstract][Full Text] [Related]
4. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Klecka G; Persoon C; Currie R Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664 [TBL] [Abstract][Full Text] [Related]
5. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene. Liao KH; Tan YM; Clewell HJ Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492 [TBL] [Abstract][Full Text] [Related]
6. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions. Aylward LL; Kirman CR; Blount BC; Hays SM Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286 [TBL] [Abstract][Full Text] [Related]
7. Identification and chemical characterization of specific organic constituents of petrochemical effluents. Botalova O; Schwarzbauer J; Frauenrath T; Dsikowitzky L Water Res; 2009 Aug; 43(15):3797-812. PubMed ID: 19577787 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of COD as an organic indicator in waste water and treated effluent by fluorescence excitation-emission (FEEM) matrix characterization. Lee S; Ahn KH Water Sci Technol; 2004; 50(8):57-63. PubMed ID: 15566187 [TBL] [Abstract][Full Text] [Related]
9. Identification of specific organic contaminants in different units of a chemical production site. Dsikowitzky L; Botalova O; al Sandouk-Lincke NA; Schwarzbauer J Environ Sci Process Impacts; 2014 Jul; 16(7):1779-89. PubMed ID: 24840322 [TBL] [Abstract][Full Text] [Related]
10. A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture--Conceptual Framework. Schowanek D; Carr R; David H; Douben P; Hall J; Kirchmann H; Patria L; Sequi P; Smith S; Webb S Regul Toxicol Pharmacol; 2004 Dec; 40(3):227-51. PubMed ID: 15546678 [TBL] [Abstract][Full Text] [Related]
11. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Stackelberg PE; Furlong ET; Meyer MT; Zaugg SD; Henderson AK; Reissman DB Sci Total Environ; 2004 Aug; 329(1-3):99-113. PubMed ID: 15262161 [TBL] [Abstract][Full Text] [Related]
12. Organic chemicals in sewage sludges. Harrison EZ; Oakes SR; Hysell M; Hay A Sci Total Environ; 2006 Aug; 367(2-3):481-97. PubMed ID: 16750559 [TBL] [Abstract][Full Text] [Related]
13. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Clarke BO; Smith SR Environ Int; 2011 Jan; 37(1):226-47. PubMed ID: 20797791 [TBL] [Abstract][Full Text] [Related]
14. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Baun A; Eriksson E; Ledin A; Mikkelsen PS Sci Total Environ; 2006 Oct; 370(1):29-38. PubMed ID: 16814849 [TBL] [Abstract][Full Text] [Related]
15. Scientific activities of Euro Chlor in monitoring and assessing naturally and man-made organohalogens. Lecloux AJ Chemosphere; 2003 Jul; 52(2):521-9. PubMed ID: 12738277 [TBL] [Abstract][Full Text] [Related]
16. Effect of sample filtration on the quality of monitoring data reported for organic compounds during wastewater treatment. Deo RP; Halden RU J Environ Monit; 2010 Feb; 12(2):478-83. PubMed ID: 20145890 [TBL] [Abstract][Full Text] [Related]
17. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Alvarez DA; Stackelberg PE; Petty JD; Huckins JN; Furlong ET; Zaugg SD; Meyer MT Chemosphere; 2005 Nov; 61(5):610-22. PubMed ID: 16219498 [TBL] [Abstract][Full Text] [Related]
18. Organic pollutants in paper-recycling process water discharge areas: first detection and emission in aquatic environment. Terasaki M; Fukazawa H; Tani Y; Makino M Environ Pollut; 2008 Jan; 151(1):53-9. PubMed ID: 17521789 [TBL] [Abstract][Full Text] [Related]
19. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams. Haggard BE; Galloway JM; Green WR; Meyer MT J Environ Qual; 2006; 35(4):1078-87. PubMed ID: 16738393 [TBL] [Abstract][Full Text] [Related]
20. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. Cassidy NJ J Contam Hydrol; 2007 Oct; 94(1-2):49-75. PubMed ID: 17601633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]