BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21075043)

  • 1. Redox platforms in cancer drug discovery and development.
    Tew KD; Townsend DM
    Curr Opin Chem Biol; 2011 Feb; 15(1):156-61. PubMed ID: 21075043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of protein S-Glutathionylation in cancer progression and development of resistance to anti-cancer drugs.
    Pal D; Rai A; Checker R; Patwardhan RS; Singh B; Sharma D; Sandur SK
    Arch Biochem Biophys; 2021 Jun; 704():108890. PubMed ID: 33894196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies.
    Grek CL; Townsend DM; Tew KD
    Pharmacol Ther; 2011 Feb; 129(2):172-84. PubMed ID: 20951732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental therapeutics: targeting the redox Achilles heel of cancer.
    Cabello CM; Bair WB; Wondrak GT
    Curr Opin Investig Drugs; 2007 Dec; 8(12):1022-37. PubMed ID: 18058573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response.
    Ye ZW; Zhang J; Ancrum T; Manevich Y; Townsend DM; Tew KD
    Antioxid Redox Signal; 2017 Feb; 26(6):247-261. PubMed ID: 26838680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.
    Kirkpatrick DL; Powis G
    Antioxid Redox Signal; 2017 Feb; 26(6):262-273. PubMed ID: 26983373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.
    Womersley JS; Uys JD
    Prog Mol Biol Transl Sci; 2016; 137():87-121. PubMed ID: 26809999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-directed cancer therapeutics: molecular mechanisms and opportunities.
    Wondrak GT
    Antioxid Redox Signal; 2009 Dec; 11(12):3013-69. PubMed ID: 19496700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Regulation
    Matsui R; Ferran B; Oh A; Croteau D; Shao D; Han J; Pimentel DR; Bachschmid MM
    Antioxid Redox Signal; 2020 Apr; 32(10):677-700. PubMed ID: 31813265
    [No Abstract]   [Full Text] [Related]  

  • 11. Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets.
    Townsend DM; Findlay VL; Tew KD
    Methods Enzymol; 2005; 401():287-307. PubMed ID: 16399394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease.
    Musaogullari A; Chai YC
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33143095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery.
    Zhou BB; Zhang H; Damelin M; Geles KG; Grindley JC; Dirks PB
    Nat Rev Drug Discov; 2009 Oct; 8(10):806-23. PubMed ID: 19794444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein S-glutathionylation: a regulatory device from bacteria to humans.
    Dalle-Donne I; Rossi R; Colombo G; Giustarini D; Milzani A
    Trends Biochem Sci; 2009 Feb; 34(2):85-96. PubMed ID: 19135374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-glutathionylation: from current basics to targeted modifications.
    Popov D
    Arch Physiol Biochem; 2014 Oct; 120(4):123-30. PubMed ID: 25112365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation.
    Tew KD
    Biochem Pharmacol; 2007 May; 73(9):1257-69. PubMed ID: 17098212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites.
    Müller-Schüssele SJ; Bohle F; Rossi J; Trost P; Meyer AJ; Zaffagnini M
    BMC Plant Biol; 2021 Jul; 21(1):322. PubMed ID: 34225654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus-faced tumor microenvironment and redox.
    Khramtsov VV; Gillies RJ
    Antioxid Redox Signal; 2014 Aug; 21(5):723-9. PubMed ID: 24512276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.