These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21075121)
1. Pathway knockout and redundancy in metabolic networks. Min Y; Jin X; Chen M; Pan Z; Ge Y; Chang J J Theor Biol; 2011 Feb; 270(1):63-9. PubMed ID: 21075121 [TBL] [Abstract][Full Text] [Related]
2. Structural robustness of metabolic networks with respect to multiple knockouts. Behre J; Wilhelm T; von Kamp A; Ruppin E; Schuster S J Theor Biol; 2008 Jun; 252(3):433-41. PubMed ID: 18023456 [TBL] [Abstract][Full Text] [Related]
3. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. Kurata H; Zhao Q; Okuda R; Shimizu K BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350 [TBL] [Abstract][Full Text] [Related]
4. Detecting structural invariants in biological reaction networks. Behre J; de Figueiredo LF; Schuster S; Kaleta C Methods Mol Biol; 2012; 804():377-407. PubMed ID: 22144164 [TBL] [Abstract][Full Text] [Related]
5. Hands-on metabolism analysis of complex biochemical networks using elementary flux modes. Schäuble S; Schuster S; Kaleta C Methods Enzymol; 2011; 500():437-56. PubMed ID: 21943910 [TBL] [Abstract][Full Text] [Related]
6. gEFM: An Algorithm for Computing Elementary Flux Modes Using Graph Traversal. Ullah E; Aeron S; Hassoun S IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):122-34. PubMed ID: 26886737 [TBL] [Abstract][Full Text] [Related]
9. Organising metabolic networks: Cycles in flux distributions. Kritz MV; Trindade Dos Santos M; Urrutia S; Schwartz JM J Theor Biol; 2010 Aug; 265(3):250-60. PubMed ID: 20435049 [TBL] [Abstract][Full Text] [Related]
10. CASOP: a computational approach for strain optimization aiming at high productivity. Hädicke O; Klamt S J Biotechnol; 2010 May; 147(2):88-101. PubMed ID: 20303369 [TBL] [Abstract][Full Text] [Related]
11. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Ishii N; Nakahigashi K; Baba T; Robert M; Soga T; Kanai A; Hirasawa T; Naba M; Hirai K; Hoque A; Ho PY; Kakazu Y; Sugawara K; Igarashi S; Harada S; Masuda T; Sugiyama N; Togashi T; Hasegawa M; Takai Y; Yugi K; Arakawa K; Iwata N; Toya Y; Nakayama Y; Nishioka T; Shimizu K; Mori H; Tomita M Science; 2007 Apr; 316(5824):593-7. PubMed ID: 17379776 [TBL] [Abstract][Full Text] [Related]
12. Optimal control of metabolic networks with saturable enzyme kinetics. Oyarzuun DA IET Syst Biol; 2011 Mar; 5(2):110-9. PubMed ID: 21405199 [TBL] [Abstract][Full Text] [Related]
13. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
15. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Less H; Angelovici R; Tzin V; Galili G Amino Acids; 2010 Oct; 39(4):1023-8. PubMed ID: 20364431 [TBL] [Abstract][Full Text] [Related]
16. Predicting novel pathways in genome-scale metabolic networks. Schuster S; de Figueiredo LF; Kaleta C Biochem Soc Trans; 2010 Oct; 38(5):1202-5. PubMed ID: 20863284 [TBL] [Abstract][Full Text] [Related]