These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21075142)

  • 1. The membrane chamber: a new type of in vitro recording chamber.
    Hill MR; Greenfield SA
    J Neurosci Methods; 2011 Jan; 195(1):15-23. PubMed ID: 21075142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
    Rambani K; Vukasinovic J; Glezer A; Potter SM
    J Neurosci Methods; 2009 Jun; 180(2):243-54. PubMed ID: 19443039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.
    Blake AJ; Rodgers FC; Bassuener A; Hippensteel JA; Pearce TM; Pearce TR; Zarnowska ED; Pearce RA; Williams JC
    J Neurosci Methods; 2010 May; 189(1):5-13. PubMed ID: 20219536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping for neuroscience and neural engineering.
    Tek P; Chiganos TC; Mohammed JS; Eddington DT; Fall CP; Ifft P; Rousche PJ
    J Neurosci Methods; 2008 Jul; 172(2):263-9. PubMed ID: 18565590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices.
    Wölfer J; Speckmann EJ; Wassmann H; Gorji A; Greiner C
    J Neurosci Methods; 2010 Oct; 193(1):77-81. PubMed ID: 20800618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mouse brain slice preparation of the hippocampo-accumbens pathway.
    Matthews RT; Coker O; Winder DG
    J Neurosci Methods; 2004 Aug; 137(1):49-60. PubMed ID: 15196826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices.
    Stopps M; Allen N; Barrett R; Choudhury HI; Jarolimek W; Johnson M; Kuenzi FM; Maubach KA; Nagano N; Seabrook GR
    J Neurosci Methods; 2004 Jan; 132(2):137-48. PubMed ID: 14706711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures.
    Thiébaud P; de Rooij NF; Koudelka-Hep M; Stoppini L
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1159-63. PubMed ID: 9353996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays.
    Kopanitsa MV; Afinowi NO; Grant SG
    BMC Neurosci; 2006 Aug; 7():61. PubMed ID: 16942609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A flow diffusion chamber for research on cells in culture].
    Akamov VS; Lavrovskaia VP; Grobova ME; Lezhnev EI
    Tsitologiia; 1990; 32(4):399-404. PubMed ID: 2238113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes.
    Jahnsen H; Kristensen BW; Thiébaud P; Noraberg J; Jakobsen B; Bove M; Martinoia S; Koudelka-Hep M; Grattarola M; Zimmer J
    Methods; 1999 Jun; 18(2):160-72. PubMed ID: 10356346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcirculatory parameters measured in subcutaneous tissue of the mouse using a novel dorsal skinfold chamber.
    Ushiyama A; Yamada S; Ohkubo C
    Microvasc Res; 2004 Sep; 68(2):147-52. PubMed ID: 15313125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro model of the outer blood-retina barrier.
    Steuer H; Jaworski A; Stoll D; Schlosshauer B
    Brain Res Brain Res Protoc; 2004 Apr; 13(1):26-36. PubMed ID: 15063838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stimulation of mouse hippocampal slice culture on microelectrode array.
    van Bergen A; Papanikolaou T; Schuker A; Möller A; Schlosshauer B
    Brain Res Brain Res Protoc; 2003 May; 11(2):123-33. PubMed ID: 12738008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A technique for repeated recordings in cortical organotypic slices.
    Dong HW; Buonomano DV
    J Neurosci Methods; 2005 Jul; 146(1):69-75. PubMed ID: 15935222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slice XVIvo™: a novel electrophysiology system with the capability for 16 independent brain slice recordings.
    Graef JD; Wei H; Lippiello PM; Bencherif M; Fedorov N
    J Neurosci Methods; 2013 Jan; 212(2):228-33. PubMed ID: 23099344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode.
    Stangl C; Fromherz P
    Eur J Neurosci; 2008 Feb; 27(4):958-64. PubMed ID: 18333966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying microfluidics to electrophysiology.
    Eddington DT
    J Vis Exp; 2007; (8):301. PubMed ID: 18989410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of a low volume recirculating superfusion chamber for long term administration of expensive drugs and dyes.
    Wilson RJ; Straus C; Remmers JE
    J Neurosci Methods; 1999 Mar; 87(2):175-84. PubMed ID: 11230814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments.
    Kroker KS; Rosenbrock H; Rast G
    J Neurosci Methods; 2011 Jan; 194(2):394-401. PubMed ID: 21087635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.