These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21075221)
21. Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Mihranyan A; Forsgren J; Strømme M; Engqvist H Langmuir; 2009 Feb; 25(3):1292-5. PubMed ID: 19115807 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mirzaee M; Vaezi M; Palizdar Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():675-84. PubMed ID: 27612761 [TBL] [Abstract][Full Text] [Related]
23. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Crawford GA; Chawla N; Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 May; 3(3):359-67. PubMed ID: 17067860 [TBL] [Abstract][Full Text] [Related]
24. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253 [TBL] [Abstract][Full Text] [Related]
25. Micropatterned TiO₂ nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Pittrof A; Bauer S; Schmuki P Acta Biomater; 2011 Jan; 7(1):424-31. PubMed ID: 20883841 [TBL] [Abstract][Full Text] [Related]
26. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules. Shibata Y; Takashima H; Yamamoto H; Miyazaki T Int J Oral Maxillofac Implants; 2004; 19(2):177-83. PubMed ID: 15101587 [TBL] [Abstract][Full Text] [Related]
27. Processing and in vitro behavior of hydroxyapatite coatings prepared by electrostatic spray assisted vapor deposition method. Hou X; Choy KL; Leach SE J Biomed Mater Res A; 2007 Dec; 83(3):683-91. PubMed ID: 17530629 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of dental enamel-like hydroxyapatite through solution mediated solid-state conversion. Zhang J; Jiang D; Zhang J; Lin Q; Huang Z Langmuir; 2010 Mar; 26(5):2989-94. PubMed ID: 20112925 [TBL] [Abstract][Full Text] [Related]
29. Anodic TiO2 nanotubular arrays with pre-synthesized hydroxyapatite--an effective approach to enhance the biocompatibility of titanium. Wang LN; Lin LX; Lin CJ; Shen C; Shinbine A; Luo JL J Nanosci Nanotechnol; 2013 Aug; 13(8):5316-26. PubMed ID: 23882759 [TBL] [Abstract][Full Text] [Related]
30. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136 [TBL] [Abstract][Full Text] [Related]
31. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Ding D; Ning C; Huang L; Jin F; Hao Y; Bai S; Li Y; Li M; Mao D Nanotechnology; 2009 Jul; 20(30):305103. PubMed ID: 19581696 [TBL] [Abstract][Full Text] [Related]
32. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. Rakngarm A; Mutoh Y J Mech Behav Biomed Mater; 2009 Oct; 2(5):444-53. PubMed ID: 19627850 [TBL] [Abstract][Full Text] [Related]
33. Surface characterization of Ca-P/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applications. Roguska A; Pisarek M; Andrzejczuk M; Lewandowska M; Kurzydlowski KJ; Janik-Czachor M J Biomed Mater Res A; 2012 Aug; 100(8):1954-62. PubMed ID: 22528961 [TBL] [Abstract][Full Text] [Related]
34. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Das C; Roy P; Yang M; Jha H; Schmuki P Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039 [TBL] [Abstract][Full Text] [Related]
35. On the feasibility of phosphate glass and hydroxyapatite engineered coating on titanium. Kim HW; Lee EJ; Jun IK; Kim HE J Biomed Mater Res A; 2005 Dec; 75(3):656-67. PubMed ID: 16108050 [TBL] [Abstract][Full Text] [Related]
36. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment. Moritz N; Areva S; Wolke J; Peltola T Biomaterials; 2005 Jul; 26(21):4460-7. PubMed ID: 15701375 [TBL] [Abstract][Full Text] [Related]
37. Role of Ti-O bonds in phase transitions of TiO2. Nosheen S; Galasso FS; Suib SL Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129 [TBL] [Abstract][Full Text] [Related]
38. Comparative assessment of structural and biological properties of biomimetically coated hydroxyapatite on alumina (alpha-Al2O3) and titanium (Ti-6Al-4V) alloy substrates. Kapoor R; Sistla PG; Kumar JM; Raj TA; Srinivas G; Chakraborty J; Sinha MK; Basu D; Pande G J Biomed Mater Res A; 2010 Sep; 94(3):913-26. PubMed ID: 20730928 [TBL] [Abstract][Full Text] [Related]
39. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969 [TBL] [Abstract][Full Text] [Related]
40. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Saji VS; Choe HC; Brantley WA Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]