BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 21075282)

  • 41. Pathogenic Mechanisms in Thalassemia II: Iron Overload.
    Ganz T; Nemeth E
    Hematol Oncol Clin North Am; 2023 Apr; 37(2):353-363. PubMed ID: 36907608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hepcidin in beta-thalassemia.
    Nemeth E
    Ann N Y Acad Sci; 2010 Aug; 1202():31-5. PubMed ID: 20712769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neonatal hemochromatosis with εγδβ-thalassemia: a case report and analysis of serum iron regulators.
    Tsuge M; Kodera A; Sumitomo H; Araki T; Yoshida R; Yasui K; Sato H; Washio Y; Washio K; Shigehara K; Yashiro M; Yagi T; Tsukahara H
    BMC Pediatr; 2022 Oct; 22(1):622. PubMed ID: 36309641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia.
    Vadolas J; Ng GZ; Kysenius K; Crouch PJ; Dames S; Eisermann M; Nualkaew T; Vilcassim S; Schaeper U; Grigoriadis G
    Br J Haematol; 2021 Jul; 194(1):200-210. PubMed ID: 33942901
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model.
    Garcia-Santos D; Hamdi A; Saxova Z; Fillebeen C; Pantopoulos K; Horvathova M; Ponka P
    Blood; 2018 Jan; 131(2):236-246. PubMed ID: 29180398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New therapeutic targets in transfusion-dependent and -independent thalassemia.
    Cappellini MD; Motta I
    Hematology Am Soc Hematol Educ Program; 2017 Dec; 2017(1):278-283. PubMed ID: 29222267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of hepcidin expression at high altitude.
    Talbot NP; Lakhal S; Smith TG; Privat C; Nickol AH; Rivera-Ch M; León-Velarde F; Dorrington KL; Mole DR; Robbins PA
    Blood; 2012 Jan; 119(3):857-60. PubMed ID: 22130801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major.
    Kattamis A; Papassotiriou I; Palaiologou D; Apostolakou F; Galani A; Ladis V; Sakellaropoulos N; Papanikolaou G
    Haematologica; 2006 Jun; 91(6):809-12. PubMed ID: 16769583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The role of erythroferrone in iron metabolism: From experimental results to pathogenesis].
    Vallet N;
    Rev Med Interne; 2018 Mar; 39(3):178-184. PubMed ID: 28666715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron age: novel targets for iron overload.
    Casu C; Rivella S
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):216-21. PubMed ID: 25696858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia.
    Kautz L; Jung G; Du X; Gabayan V; Chapman J; Nasoff M; Nemeth E; Ganz T
    Blood; 2015 Oct; 126(17):2031-7. PubMed ID: 26276665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression.
    Frazer DM; Wilkins SJ; Darshan D; Badrick AC; McLaren GD; Anderson GJ
    Br J Haematol; 2012 Jun; 157(5):615-26. PubMed ID: 22449175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Urinary hepcidin in congenital chronic anemias.
    Kearney SL; Nemeth E; Neufeld EJ; Thapa D; Ganz T; Weinstein DA; Cunningham MJ
    Pediatr Blood Cancer; 2007 Jan; 48(1):57-63. PubMed ID: 16220548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anemia in beta-thalassemia patients targets hepatic hepcidin transcript levels independently of iron metabolism genes controlling hepcidin expression.
    Camberlein E; Zanninelli G; Détivaud L; Lizzi AR; Sorrentino F; Vacquer S; Troadec MB; Angelucci E; Abgueguen E; Loréal O; Cianciulli P; Lai ME; Brissot P
    Haematologica; 2008 Jan; 93(1):111-5. PubMed ID: 18166793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altered erythropoiesis and iron metabolism in carriers of thalassemia.
    Guimarães JS; Cominal JG; Silva-Pinto AC; Olbina G; Ginzburg YZ; Nandi V; Westerman M; Rivella S; de Souza AM
    Eur J Haematol; 2015 Jun; 94(6):511-8. PubMed ID: 25307880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hepcidin in chronic kidney disease anemia.
    Santos-Silva A; Ribeiro S; Reis F; Belo L
    Vitam Horm; 2019; 110():243-264. PubMed ID: 30798815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron metabolism in athletes--achieving a gold standard.
    Latunde-Dada GO
    Eur J Haematol; 2013 Jan; 90(1):10-5. PubMed ID: 23078160
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hepcidin and disorders of iron metabolism.
    Ganz T; Nemeth E
    Annu Rev Med; 2011; 62():347-60. PubMed ID: 20887198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders.
    Ganz T; Nemeth E
    Hematology Am Soc Hematol Educ Program; 2011; 2011():538-42. PubMed ID: 22160086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A human anti-matriptase-2 antibody limits iron overload, α-globin aggregates, and splenomegaly in β-thalassemic mice.
    Wake M; Palin A; Belot A; Berger M; Lorgouilloux M; Bichon M; Papworth J; Bayliss L; Grimshaw B; Rynkiewicz N; Paterson J; Poindron A; Spearing E; Carter E; Hudson R; Campbell M; Petzer V; Besson-Fournier C; Latour C; Largounez A; Gourbeyre O; Fay A; Coppin H; Roth MP; Theurl I; Germaschewski V; Meynard D
    Blood Adv; 2024 Apr; 8(8):1898-1907. PubMed ID: 38241484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.