These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 21075621)

  • 1. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.
    Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A
    Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VFA generation from waste activated sludge: effect of temperature and mixing.
    Yuan Q; Sparling R; Oleszkiewicz JA
    Chemosphere; 2011 Jan; 82(4):603-7. PubMed ID: 21075416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids.
    Xiong H; Chen J; Wang H; Shi H
    Bioresour Technol; 2012 Sep; 119():285-92. PubMed ID: 22750494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes.
    Chen H; Meng H; Nie Z; Zhang M
    Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by fatty acids during fermentation of pre-treated waste activated sludge.
    Pratt S; Liew D; Batstone DJ; Werker AG; Morgan-Sagastume F; Lant PA
    J Biotechnol; 2012 May; 159(1-2):38-43. PubMed ID: 22361002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion.
    Gomec CY; Speece RE
    Water Sci Technol; 2003; 48(3):143-50. PubMed ID: 14518866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.
    Appels L; Van Assche A; Willems K; Degrève J; Van Impe J; Dewil R
    Bioresour Technol; 2011 Mar; 102(5):4124-30. PubMed ID: 21227687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of municipal primary sludge: effect of SRT and solids concentration on volatile fatty acid production.
    Bouzas A; Gabaldón C; Marzal P; Penya-Roja JM; Seco A
    Environ Technol; 2002 Aug; 23(8):863-75. PubMed ID: 12211447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature.
    Ferreiro N; Soto M
    Water Sci Technol; 2003; 47(12):239-46. PubMed ID: 12926694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.
    Feng L; Wang H; Chen Y; Wang Q
    Bioresour Technol; 2009 Jan; 100(1):44-9. PubMed ID: 18595688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elutriated acid fermentation of municipal primary sludge.
    Ahn YH; Speece RE
    Water Res; 2006 Jun; 40(11):2210-20. PubMed ID: 16678879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge.
    Lee IS; Rittmann BE
    Bioresour Technol; 2011 Feb; 102(3):2542-8. PubMed ID: 21145731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.
    Morgan-Sagastume F; Karlsson A; Johansson P; Pratt S; Boon N; Lant P; Werker A
    Water Res; 2010 Oct; 44(18):5196-211. PubMed ID: 20638096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sludge type on the fermentation products.
    Yuan Q; Baranowski M; Oleszkiewicz JA
    Chemosphere; 2010 Jun; 80(4):445-9. PubMed ID: 20444490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.