These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21075652)

  • 1. A rapid computational filter for predicting the rate of human renal clearance.
    Paine SW; Barton P; Bird J; Denton R; Menochet K; Smith A; Tomkinson NP; Chohan KK
    J Mol Graph Model; 2010 Dec; 29(4):529-37. PubMed ID: 21075652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico renal clearance model using classical Volsurf approach.
    Doddareddy MR; Cho YS; Koh HY; Kim DH; Pae AN
    J Chem Inf Model; 2006; 46(3):1312-20. PubMed ID: 16711750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption.
    Paine SW; Ménochet K; Denton R; McGinnity DF; Riley RJ
    Drug Metab Dispos; 2011 Jun; 39(6):1008-13. PubMed ID: 21357702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting total clearance in humans from chemical structure.
    Yu MJ
    J Chem Inf Model; 2010 Jul; 50(7):1284-95. PubMed ID: 20617831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries.
    Chohan KK; Paine SW; Mistry J; Barton P; Davis AM
    J Med Chem; 2005 Aug; 48(16):5154-61. PubMed ID: 16078835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical determinants of human renal clearance.
    Varma MV; Feng B; Obach RS; Troutman MD; Chupka J; Miller HR; El-Kattan A
    J Med Chem; 2009 Aug; 52(15):4844-52. PubMed ID: 19445515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Dynamic Physiologically Based Mechanistic Kidney Model to Predict Renal Clearance.
    Huang W; Isoherranen N
    CPT Pharmacometrics Syst Pharmacol; 2018 Sep; 7(9):593-602. PubMed ID: 30043446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico categorization of in vivo intrinsic clearance using machine learning.
    Hsiao YW; Fagerholm U; Norinder U
    Mol Pharm; 2013 Apr; 10(4):1318-21. PubMed ID: 23427914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study.
    Deconinck E; Zhang MH; Petitet F; Dubus E; Ijjaali I; Coomans D; Vander Heyden Y
    Anal Chim Acta; 2008 Feb; 609(1):13-23. PubMed ID: 18243869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of volume of distribution in human using linear and nonlinear models on a 669 compound data set.
    Berellini G; Springer C; Waters NJ; Lombardo F
    J Med Chem; 2009 Jul; 52(14):4488-95. PubMed ID: 19603833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in excretion of hippurate, as a metabolite of benzoate and as an administered species, in the single-pass isolated perfused rat kidney explained.
    Geng W; Pang KS
    J Pharmacol Exp Ther; 1999 Feb; 288(2):597-606. PubMed ID: 9918564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis.
    Gleeson MP
    J Med Chem; 2007 Jan; 50(1):101-12. PubMed ID: 17201414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of classification regression tree in predicting oral absorption in humans.
    Bai JP; Utis A; Crippen G; He HD; Fischer V; Tullman R; Yin HQ; Hsu CP; Jiang L; Hwang KK
    J Chem Inf Comput Sci; 2004; 44(6):2061-9. PubMed ID: 15554676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine.
    Hou T; Wang J; Li Y
    J Chem Inf Model; 2007; 47(6):2408-15. PubMed ID: 17929911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS).
    Varma MV; Steyn SJ; Allerton C; El-Kattan AF
    Pharm Res; 2015 Dec; 32(12):3785-802. PubMed ID: 26155985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional quantitative structure activity relationship computational approaches for prediction of human in vitro intrinsic clearance.
    Ekins S; Obach RS
    J Pharmacol Exp Ther; 2000 Nov; 295(2):463-73. PubMed ID: 11046077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical PLS modeling for predicting the binding of a comprehensive set of structurally diverse protein-ligand complexes.
    Lindström A; Pettersson F; Almqvist F; Berglund A; Kihlberg J; Linusson A
    J Chem Inf Model; 2006; 46(3):1154-67. PubMed ID: 16711735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage.
    Su BH; Shen MY; Esposito EX; Hopfinger AJ; Tseng YJ
    J Chem Inf Model; 2010 Jul; 50(7):1304-18. PubMed ID: 20565102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human pharmacokinetics--improving microsome-based predictions of hepatic metabolic clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Oct; 59(10):1427-31. PubMed ID: 17910819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.