These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21075939)

  • 21. Chemorepellents in Paramecium and Tetrahymena.
    Francis JT; Hennessey TM
    J Eukaryot Microbiol; 1995; 42(1):78-83. PubMed ID: 7537146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new method for quantitation of ion fluxes across in vivo human gastric mucosa: effect of aspirin, acetaminophen, ethanol, and hyperosmolar solutions.
    Stern AI; Hogan DL; Isenberg JI
    Gastroenterology; 1984 Jan; 86(1):60-70. PubMed ID: 6315524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid on rabbit sinoatrial node cells treated with cardiotonic steroids.
    Miyamae SI; Goto K
    J Pharmacol Exp Ther; 1988 May; 245(2):706-17. PubMed ID: 3130477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porphyrin rings and phospholipids: stimulators of cloning efficiency in certain species of Tetrahymena.
    Schousboe P; Christensen ST; Ghiladi M; Rasmussen L
    J Protozool; 1992; 39(2):343-5. PubMed ID: 1578410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: role in the initiation of sperm motility.
    Gatti JL; Billard R; Christen R
    J Cell Physiol; 1990 Jun; 143(3):546-54. PubMed ID: 2358473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan.
    Smith-Somerville HE; Hardman JK; Timkovich R; Ray WJ; Rose KE; Ryals PE; Gibbons SH; Buhse HE
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7325-30. PubMed ID: 10860998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral bioassays and their uses in Tetrahymena.
    Hennessey TM; Lampert TJ
    Methods Cell Biol; 2012; 109():393-410. PubMed ID: 22444154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of cortical proteins in Tetrahymena vorax microstomes and macrostomes.
    Buhse HE; Williams NE
    J Protozool; 1982 May; 29(2):222-6. PubMed ID: 7097614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quantitative assay for ciliate chemotaxis.
    Leick V; Helle J
    Anal Biochem; 1983 Dec; 135(2):466-9. PubMed ID: 6660520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid modification during cytodifferentiation of Tetrahymena vorax. Whole cell phospholipids and triacylglycerols of microstomal and macrostomal phenotypes.
    Ryals PE; Buhse HE; Modzejewski J
    Biochim Biophys Acta; 1989 Jun; 991(3):438-44. PubMed ID: 2730920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.
    Lampert TJ; Coleman KD; Hennessey TM
    PLoS One; 2011; 6(11):e28022. PubMed ID: 22140501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bistable membrane potential of the ciliate Coleps hirtus.
    Rudberg P; Sand O
    J Exp Biol; 2000 Feb; 203(Pt 4):757-64. PubMed ID: 10648217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. THE EFFECT OF PROTEOSE PEPTONE CONCENTRATION ON CELL SIZE IN TETRAHYMENA PYRIFORMIS W.
    HUDDLESTON MS; CAVALIER L; ELIASSEN J; KOZAK M; MALEDON A
    Life Sci (1962); 1964 Oct; 3():1181-90. PubMed ID: 14225378
    [No Abstract]   [Full Text] [Related]  

  • 35. Some but not All Tetrahymena Species Destroy Monolayer Cultures of Cells from a Wide Range of Tissues and Species.
    Pinheiro MD; Bols NC
    J Eukaryot Microbiol; 2015; 62(5):605-13. PubMed ID: 25733238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different polypeptides in two homologous cellular structures: the microstomal and macrostomal oral apparatus of Tetrahymena vorax.
    Gulliksen OM; Løvlie A; Kvammen L
    Dev Biol; 1984 Jun; 103(2):511-6. PubMed ID: 6724139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional tracking of the ciliate Tetrahymena reveals the mechanism of ciliary stroke-driven helical swimming.
    Marumo A; Yamagishi M; Yajima J
    Commun Biol; 2021 Oct; 4(1):1209. PubMed ID: 34675362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.
    Connolly JG; Brown ID; Lee AG; Kerkut GA
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cadmium on a microbial food chain, Chlamydomonas reinhardii and Tetrahymena vorax.
    Lawrence SG; Holoka MH; Hamilton RD
    Sci Total Environ; 1989 Nov; 87-88():381-95. PubMed ID: 2609152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-induced synchronous divisions in the ciliate protozoon Tetrahymena pyriformis growing in synthetic and proteose-peptone media.
    SCHERBAUM O; ZEUTHEN E
    Exp Cell Res; 1955; (Suppl 3):312-25. PubMed ID: 13344487
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.