BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21075944)

  • 1. Eyes with basic dorsal and specific ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae).
    Awata H; Matsushita A; Wakakuwa M; Arikawa K
    J Exp Biol; 2010 Dec; 213(Pt 23):4023-9. PubMed ID: 21075944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis.
    Matsushita A; Awata H; Wakakuwa M; Takemura SY; Arikawa K
    Proc Biol Sci; 2012 Sep; 279(1742):3482-90. PubMed ID: 22628477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate.
    Awata H; Wakakuwa M; Arikawa K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):401-8. PubMed ID: 19224222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rough eyes of the Northeast-Asian wood white, Leptidea amurensis.
    Uchiyama H; Awata H; Kinoshita M; Arikawa K
    J Exp Biol; 2013 Sep; 216(Pt 18):3414-21. PubMed ID: 23685978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes.
    Arikawa K; Iwanaga T; Wakakuwa M; Kinoshita M
    Front Neural Circuits; 2017; 11():96. PubMed ID: 29238294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora.
    Wakakuwa M; Stavenga DG; Kurasawa M; Arikawa K
    J Exp Biol; 2004 Jul; 207(Pt 16):2803-10. PubMed ID: 15235009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue and double-peaked green receptors depend on ommatidial type in the eye of the Japanese yellow swallowtail Papilio xuthus.
    Kinoshita M; Kurihara D; Tsutaya A; Arikawa K
    Zoolog Sci; 2006 Feb; 23(2):199-204. PubMed ID: 16603812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adult stemmata of the butterfly Vanessa cardui express UV and green opsin mRNAs.
    Briscoe AD; White RH
    Cell Tissue Res; 2005 Jan; 319(1):175-9. PubMed ID: 15503147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui.
    Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH
    J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.
    Schmeling F; Wakakuwa M; Tegtmeier J; Kinoshita M; Bockhorst T; Arikawa K; Homberg U
    J Exp Biol; 2014 Oct; 217(Pt 19):3557-68. PubMed ID: 25104757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Ozaki K; Arikawa K
    J Exp Biol; 2000 Oct; 203(Pt 19):2887-94. PubMed ID: 10976026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.
    Perry M; Kinoshita M; Saldi G; Huo L; Arikawa K; Desplan C
    Nature; 2016 Jul; 535(7611):280-4. PubMed ID: 27383790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral organization of the eye of a butterfly, Papilio.
    Arikawa K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Nov; 189(11):791-800. PubMed ID: 14520495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular diversity of visual pigments in Stomatopoda (Crustacea).
    Porter ML; Bok MJ; Robinson PR; Cronin TW
    Vis Neurosci; 2009; 26(3):255-65. PubMed ID: 19534844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina.
    Spaethe J; Briscoe AD
    J Exp Biol; 2005 Jun; 208(Pt 12):2347-61. PubMed ID: 15939775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhabdom constriction enhances filtering by the red screening pigment in the eye of the Eastern Pale Clouded yellow butterfly, Colias erate (Pieridae).
    Arikawa K; Pirih P; Stavenga DG
    J Exp Biol; 2009 Jul; 212(Pt 13):2057-64. PubMed ID: 19525432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The eyes and vision of butterflies.
    Arikawa K
    J Physiol; 2017 Aug; 595(16):5457-5464. PubMed ID: 28332207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.