These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 210762)
41. Light-activated proton-motive force generation in lipid vesicles containing cytochrome b-c1 complex and bacterial reaction centres. Rich PR; Heathcote P Biochim Biophys Acta; 1983 Nov; 725(2):332-40. PubMed ID: 6315060 [TBL] [Abstract][Full Text] [Related]
42. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Seo BB; Kitajima-Ihara T; Chan EK; Scheffler IE; Matsuno-Yagi A; Yagi T Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9167-71. PubMed ID: 9689052 [TBL] [Abstract][Full Text] [Related]
43. Characterization of NADPH-dependent ubiquinone reductase activity in rat liver cytosol: effect of various factors on ubiquinone-reducing activity and discrimination from other quinone reductases. Takahashi T; Okamoto T; Kishi T J Biochem; 1996 Feb; 119(2):256-63. PubMed ID: 8882715 [TBL] [Abstract][Full Text] [Related]
44. Inhibition of mitochondrial NADH:ubiquinone oxidoreductase by ethoxyformic anhydride. Vik SB; Hatefi Y Biochem Int; 1984 Nov; 9(5):547-55. PubMed ID: 6441575 [TBL] [Abstract][Full Text] [Related]
45. Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I). Ushakova AV; Grivennikova VG; Ohnishi T; Vinogradov AD Biochim Biophys Acta; 1999 Jan; 1409(3):143-53. PubMed ID: 9878712 [TBL] [Abstract][Full Text] [Related]
46. Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes. A structure-activity study. Anderson WM; Wood JM; Anderson AC Biochem Pharmacol; 1993 May; 45(10):2115-22. PubMed ID: 8512593 [TBL] [Abstract][Full Text] [Related]
48. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. Kotlyar AB; Sled VD; Burbaev DS; Moroz IA; Vinogradov AD FEBS Lett; 1990 May; 264(1):17-20. PubMed ID: 2159893 [TBL] [Abstract][Full Text] [Related]
49. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I. Masuya T; Okuda K; Murai M; Miyoshi H Biosci Biotechnol Biochem; 2016 Aug; 80(8):1464-9. PubMed ID: 27140857 [TBL] [Abstract][Full Text] [Related]
50. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles. Galkin AS; Grivennikova VG; Vinogradov AD Biochemistry (Mosc); 2001 Apr; 66(4):435-43. PubMed ID: 11403652 [TBL] [Abstract][Full Text] [Related]
51. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition. Grivennikova VG; Kapustin AN; Vinogradov AD J Biol Chem; 2001 Mar; 276(12):9038-44. PubMed ID: 11124957 [TBL] [Abstract][Full Text] [Related]
52. Comparison of the structural features of ubiquinone reduction sites between glucose dehydrogenase in Escherichia coli and bovine heart mitochondrial complex I. Sakamoto K; Miyoshi H; Matsushita K; Nakagawa M; Ikeda J; Ohshima M; Adachi O; Akagi T; Iwamura H Eur J Biochem; 1996 Apr; 237(1):128-35. PubMed ID: 8620864 [TBL] [Abstract][Full Text] [Related]
53. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells. Takahashi T; Okuno M; Okamoto T; Kishi T Biofactors; 2008; 32(1-4):59-70. PubMed ID: 19096101 [TBL] [Abstract][Full Text] [Related]
54. [One- and two-electron reduction of ubiquinone homologs by NADH- dehydrogenase preparations from the mitochondrial respiratory chain]. Sled' VD; Zinich VN; Kotliar AB Biokhimiia; 1989 Sep; 54(9):1571-5. PubMed ID: 2590688 [TBL] [Abstract][Full Text] [Related]
55. The inhibition of NADH oxidase by the lower homologs of coenzyme Q. Lenaz G; Pasquali P; Bertoli E; Parenti-Castelli G Arch Biochem Biophys; 1975 Jul; 169(1):217-26. PubMed ID: 1164022 [No Abstract] [Full Text] [Related]
56. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Kotlyar AB; Sled VD; Vinogradov AD Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007 [TBL] [Abstract][Full Text] [Related]
57. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Satoh T; Miyoshi H; Sakamoto K; Iwamura H Biochim Biophys Acta; 1996 Jan; 1273(1):21-30. PubMed ID: 8573592 [TBL] [Abstract][Full Text] [Related]
58. Resolution and reconstitution of the mitochondrial electron transport system. IV. The reconstitution of rotenone-sensitive reduced nicotinamide adenine dinucleotide-ubiquinone reductase from reduced nicotinamide adenine dinucleotide dehydrogenase and phospholipids. Ragan CI; Racker E J Biol Chem; 1973 Oct; 248(19):6876-84. PubMed ID: 4147655 [No Abstract] [Full Text] [Related]
59. Composition and enzymatic properties of the mitochondrial NADH- and NADPH-ubiquinone reductase (complex I). Hatefi Y Adv Exp Med Biol; 1976; 74():150-60. PubMed ID: 8962 [No Abstract] [Full Text] [Related]
60. Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors. Shinzawa-Itoh K; Seiyama J; Terada H; Nakatsubo R; Naoki K; Nakashima Y; Yoshikawa S Biochemistry; 2010 Jan; 49(3):487-92. PubMed ID: 19961238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]