These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 210763)
41. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Halestrap AP Biochem J; 1978 Jun; 172(3):389-98. PubMed ID: 28727 [TBL] [Abstract][Full Text] [Related]
42. Stimulation of alanine transport and metabolism by dibutyryl cyclic AMP in the hepatocytes from fed rats. Assessment of transport as a potential rate-limiting step for alanine metabolism. McGivan JD; Ramsell JC; Lacey JH Biochim Biophys Acta; 1981 Jun; 644(2):295-304. PubMed ID: 6266469 [TBL] [Abstract][Full Text] [Related]
43. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C. Dalton S; Hughes BP; Barritt GJ Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860 [TBL] [Abstract][Full Text] [Related]
44. Glucagon stimulation of ruthenium red-insensitive calcium ion transport in developing rat liver. Reinhart PH; Bygrave FL Biochem J; 1981 Feb; 194(2):541-9. PubMed ID: 6171260 [TBL] [Abstract][Full Text] [Related]
45. Administration of insulin to rats induces cycloheximide-sensitive changes in the calcium-ion-transport system of mitochondria isolated subsequently from liver. Barritt GJ; Dorman DM; Bygrave FL Biochem Soc Trans; 1975; 3(5):711-2. PubMed ID: 1193275 [No Abstract] [Full Text] [Related]
46. Hormonal regulation of serine dehydratase activity in primary cultures of adult rat hepatocytes. Noda C; Nakamura T; Ichihara A Biochem Biophys Res Commun; 1981 May; 100(1):65-72. PubMed ID: 6266411 [No Abstract] [Full Text] [Related]
47. [Effects of glucagon and epinephrine on the rat liver: oxidative phosphorylation and ultrastructure]. Breton L; Maissiat R; Clot JP; Baudry M C R Seances Soc Biol Fil; 1986; 180(6):613-21. PubMed ID: 2952223 [TBL] [Abstract][Full Text] [Related]
48. Stimulation of oxygen uptake by glucagon is oxygen dependent in perfused rat liver. Kizaki Z; Thurman RG Am J Physiol; 1989 Feb; 256(2 Pt 1):G369-76. PubMed ID: 2919680 [TBL] [Abstract][Full Text] [Related]
49. Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Cousins RJ; Dunn MA; Leinart AS; Yedinak KC; DiSilvestro RA Am J Physiol; 1986 Dec; 251(6 Pt 1):E688-94. PubMed ID: 3024499 [TBL] [Abstract][Full Text] [Related]
50. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. Altin JG; Bygrave FL Biochem J; 1986 Sep; 238(3):653-61. PubMed ID: 3026358 [TBL] [Abstract][Full Text] [Related]
51. Decrease of rat liver cysteine dioxygenase (cysteine oxidase) activity mediated by glucagon. Hosokawa Y; Yamaguchi K; Kohashi N; Kori Y; Ueda I J Biochem; 1978 Aug; 84(2):419-24. PubMed ID: 212416 [TBL] [Abstract][Full Text] [Related]
52. The effect of glucagon on the kinetics of hepatic mitochondrial calcium uptake. Andia-Waltenbaugh AM; Tate CA; Friedmann NK Mol Cell Biochem; 1981 May; 36(3):177-84. PubMed ID: 7254203 [TBL] [Abstract][Full Text] [Related]
53. Mobilization of intracellular calcium by glucagon and cyclic AMP analogues in isolated rat hepatocytes. Mauger JP; Claret M FEBS Lett; 1986 Jan; 195(1-2):106-10. PubMed ID: 3002849 [TBL] [Abstract][Full Text] [Related]
54. Regulation of glucokinase gene expression in cultured rat islet cells: the inhibitory effects of T3 and glucagon, and the stimulatory effect of glibenclamide. Hinata S; Nishi S; Matsukage T; Funai T; Ichiyama A; Yoshimi T Diabetes Res; 1994; 26(1):13-23. PubMed ID: 7664533 [TBL] [Abstract][Full Text] [Related]
55. Influence of glucagon, 6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate and triamcinolone on the arginine synthetase system in perinatal rat liver. Schwartz AL Biochem J; 1972 Jan; 126(1):89-98. PubMed ID: 4342387 [TBL] [Abstract][Full Text] [Related]
56. Ca2+-induced accumulation of pyrophosphate in mitochondria during acetate metabolism. Inoue T; Yamada T; Furuya E; Tagawa K Biochem J; 1989 Sep; 262(3):965-70. PubMed ID: 2556115 [TBL] [Abstract][Full Text] [Related]
57. A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Halestrap AP; Armston AE Biochem J; 1984 Nov; 223(3):677-85. PubMed ID: 6095807 [TBL] [Abstract][Full Text] [Related]
58. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Rugolo M; Siliprandi D; Siliprandi N; Toninello A Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312 [TBL] [Abstract][Full Text] [Related]
59. Plasma membrane vesicles from isolated hepatocytes retain the increase of amino acid transport induced by dibutyryl cyclic AMP in intact cells. Samson M; Fehlmann M Biochim Biophys Acta; 1982 Apr; 687(1):35-41. PubMed ID: 6280765 [TBL] [Abstract][Full Text] [Related]
60. Regulation of heparan sulphate metabolism by adenosine 3':5'-cyclic monophosphate in hepatocytes in culture. Sudhakaran PR; Sinn W; von Figura K Biochem J; 1980 Nov; 192(2):395-402. PubMed ID: 6263252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]