These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21076666)
1. The Characteristics of Seebeck Coefficient in Silicon Nanowires Manufactured by CMOS Compatible Process. Jang M; Park Y; Jun M; Hyun Y; Choi SJ; Zyung T Nanoscale Res Lett; 2010 Jul; 5(10):1654-7. PubMed ID: 21076666 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology. Hyun Y; Park Y; Choi W; Kim J; Zyung T; Jang M Nanotechnology; 2012 Oct; 23(40):405707. PubMed ID: 22995969 [TBL] [Abstract][Full Text] [Related]
3. Seebeck coefficient characterization of highly doped n- and p-type silicon nanowires for thermoelectric device applications fabricated with top-down approach. Kim J; Hyun Y; Park Y; Choi W; Kim S; Jeon H; Zyung T; Jang M J Nanosci Nanotechnol; 2013 Sep; 13(9):6416-9. PubMed ID: 24205673 [TBL] [Abstract][Full Text] [Related]
4. Top-down processed silicon nanowires for thermoelectric applications. Jang M; Park Y; Hyun Y; Jun M; Choi SJ; Zyung T; Kim JD J Nanosci Nanotechnol; 2012 Apr; 12(4):3552-4. PubMed ID: 22849166 [TBL] [Abstract][Full Text] [Related]
5. Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires. Bäßler S; Böhnert T; Gooth J; Schumacher C; Pippel E; Nielsch K Nanotechnology; 2013 Dec; 24(49):495402. PubMed ID: 24231731 [TBL] [Abstract][Full Text] [Related]
6. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications. Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353 [TBL] [Abstract][Full Text] [Related]
7. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process. Yang MZ; Wu CC; Dai CL; Tsai WJ Sensors (Basel); 2013 Feb; 13(2):2359-67. PubMed ID: 23396193 [TBL] [Abstract][Full Text] [Related]
9. Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping. Al-Galiby QH; Sadeghi H; Manrique DZ; Lambert CJ Nanoscale; 2017 Apr; 9(14):4819-4825. PubMed ID: 28352900 [TBL] [Abstract][Full Text] [Related]
10. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film. Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511 [TBL] [Abstract][Full Text] [Related]
11. Complementary Photo-Synapses Based on Light-Stimulated Porphyrin-Coated Silicon Nanowires Field-Effect Transistors (LPSNFET). Li X; Yu B; Wang B; Bi R; Li H; Tu K; Chen G; Li Z; Huang R; Li M Small; 2021 Jul; 17(30):e2101434. PubMed ID: 34187085 [TBL] [Abstract][Full Text] [Related]
12. Thermal and Thermoelectric Transport in Highly Resistive Single Sb Ko TY; Shellaiah M; Sun KW Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527 [TBL] [Abstract][Full Text] [Related]
14. Seebeck coefficient of nanowires interconnected into large area networks. Pennelli G; Totaro M; Piotto M; Bruschi P Nano Lett; 2013 Jun; 13(6):2592-7. PubMed ID: 23668777 [TBL] [Abstract][Full Text] [Related]
16. A low temperature combination method for the production of ZnO nanowires. Cross RB; Souza MM; Sankara Narayanan EM Nanotechnology; 2005 Oct; 16(10):2188-92. PubMed ID: 20817993 [TBL] [Abstract][Full Text] [Related]
17. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air. Choi J; Cho K; Kim S Nanotechnology; 2013 Nov; 24(45):455402. PubMed ID: 24141226 [TBL] [Abstract][Full Text] [Related]
18. High Seebeck Coefficient of Porous Silicon: Study of the Porosity Dependence. Valalaki K; Benech P; Galiouna Nassiopoulou A Nanoscale Res Lett; 2016 Dec; 11(1):201. PubMed ID: 27075343 [TBL] [Abstract][Full Text] [Related]
19. Seebeck effects in n-type and p-type polymers driven simultaneously by surface polarization and entropy differences based on conductor/polymer/conductor thin-film devices. Hu D; Liu Q; Tisdale J; Lei T; Pei J; Wang H; Urbas A; Hu B ACS Nano; 2015 May; 9(5):5208-13. PubMed ID: 25877512 [TBL] [Abstract][Full Text] [Related]
20. Potentialities of silicon nanowire forests for thermoelectric generation. Dimaggio E; Pennelli G Nanotechnology; 2018 Apr; 29(13):135401. PubMed ID: 29355836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]