These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21076908)

  • 1. Enzymes for the biofunctionalization of poly(ethylene terephthalate).
    Zimmermann W; Billig S
    Adv Biochem Eng Biotechnol; 2011; 125():97-120. PubMed ID: 21076908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic hydrolysis of PTT polymers and oligomers.
    Eberl A; Heumann S; Kotek R; Kaufmann F; Mitsche S; Cavaco-Paulo A; Gübitz GM
    J Biotechnol; 2008 May; 135(1):45-51. PubMed ID: 18405994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules.
    Eberl A; Heumann S; Brückner T; Araujo R; Cavaco-Paulo A; Kaufmann F; Kroutil W; Guebitz GM
    J Biotechnol; 2009 Sep; 143(3):207-12. PubMed ID: 19616594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic surface modification of poly(ethylene terephthalate).
    Vertommen MA; Nierstrasz VA; Veer Mv; Warmoeskerken MM
    J Biotechnol; 2005 Dec; 120(4):376-86. PubMed ID: 16115695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates.
    Silva C; Da S; Silva N; Matamá T; Araújo R; Martins M; Chen S; Chen J; Wu J; Casal M; Cavaco-Paulo A
    Biotechnol J; 2011 Oct; 6(10):1230-9. PubMed ID: 21751386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca.
    Roth C; Wei R; Oeser T; Then J; Föllner C; Zimmermann W; Sträter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7815-23. PubMed ID: 24728714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.
    Wei R; Oeser T; Schmidt J; Meier R; Barth M; Then J; Zimmermann W
    Biotechnol Bioeng; 2016 Aug; 113(8):1658-65. PubMed ID: 26804057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.
    Wei R; Oeser T; Zimmermann W
    Adv Appl Microbiol; 2014; 89():267-305. PubMed ID: 25131405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca.
    Then J; Wei R; Oeser T; Barth M; Belisário-Ferrari MR; Schmidt J; Zimmermann W
    Biotechnol J; 2015 Apr; 10(4):592-8. PubMed ID: 25545638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    N Biotechnol; 2016 Mar; 33(2):295-304. PubMed ID: 26594021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IsPETase Is a Novel Biocatalyst for Poly(ethylene terephthalate) (PET) Hydrolysis.
    Kan Y; He L; Luo Y; Bao R
    Chembiochem; 2021 May; 22(10):1706-1716. PubMed ID: 33434375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres.
    Heumann S; Eberl A; Pobeheim H; Liebminger S; Fischer-Colbrie G; Almansa E; Cavaco-Paulo A; Gübitz GM
    J Biochem Biophys Methods; 2006 Nov; 69(1-2):89-99. PubMed ID: 16624419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and comparison of cutinases for synthetic polyester degradation.
    Baker PJ; Poultney C; Liu Z; Gross R; Montclare JK
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):229-40. PubMed ID: 21713515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential.
    Dimarogona M; Nikolaivits E; Kanelli M; Christakopoulos P; Sandgren M; Topakas E
    Biochim Biophys Acta; 2015 Nov; 1850(11):2308-17. PubMed ID: 26291558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutinase: characteristics, preparation, and application.
    Chen S; Su L; Chen J; Wu J
    Biotechnol Adv; 2013 Dec; 31(8):1754-67. PubMed ID: 24055682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of bacterial cutinase.
    Chen S; Tong X; Woodard RW; Du G; Wu J; Chen J
    J Biol Chem; 2008 Sep; 283(38):25854-62. PubMed ID: 18658138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation.
    Shirke AN; Butterfoss GL; Saikia R; Basu A; de Maria L; Svendsen A; Gross RA
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28488758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of new feruloyl esterases to understand lipase evolution: the case of Bacillus flexus.
    Sánchez-González M; Blanco-Gámez A; Parra-Saldívar R; Mateos-Díaz JC; Estrada-Alvarado MI
    Methods Mol Biol; 2012; 861():53-61. PubMed ID: 22426711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing enzyme promiscuity of SGNH hydrolases.
    Leščić Ašler I; Ivić N; Kovačić F; Schell S; Knorr J; Krauss U; Wilhelm S; Kojić-Prodić B; Jaeger KE
    Chembiochem; 2010 Oct; 11(15):2158-67. PubMed ID: 20931591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.