These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21076919)

  • 1. Microvinification--how small can we go?
    Liccioli T; Tran TM; Cozzolino D; Jiranek V; Chambers PJ; Schmidt SA
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1621-8. PubMed ID: 21076919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must.
    Moreira N; Mendes F; Guedes de Pinho P; Hogg T; Vasconcelos I
    Int J Food Microbiol; 2008 Jun; 124(3):231-8. PubMed ID: 18457893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations.
    Xufre A; Albergaria H; Inácio J; Spencer-Martins I; Gírio F
    Int J Food Microbiol; 2006 May; 108(3):376-84. PubMed ID: 16504329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of laboratory and pilot-scale fermentations in winemaking conditions.
    Casalta E; Aguera E; Picou C; Rodriguez-Bencomo JJ; Salmon JM; Sablayrolles JM
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1665-73. PubMed ID: 20461506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wine yeasts for the future.
    Fleet GH
    FEMS Yeast Res; 2008 Nov; 8(7):979-95. PubMed ID: 18793201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking.
    Ciani M; Comitini F; Mannazzu I; Domizio P
    FEMS Yeast Res; 2010 Mar; 10(2):123-33. PubMed ID: 19807789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of using mixed wine yeast cultures in the production of Chardonnay wines.
    García V; Vásquez H; Fonseca F; Manzanares P; Viana F; Martínez C; Ganga MA
    Rev Argent Microbiol; 2010; 42(3):226-9. PubMed ID: 21180394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy.
    Nieuwoudt HH; Pretorius IS; Bauer FF; Nel DG; Prior BA
    J Microbiol Methods; 2006 Nov; 67(2):248-56. PubMed ID: 16697064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation.
    Erten H; Tanguler H
    Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of scale on gene expression: commercial versus laboratory wine fermentations.
    Rossouw D; Jolly N; Jacobson D; Bauer FF
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1207-19. PubMed ID: 21931974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae.
    Pérez-Nevado F; Albergaria H; Hogg T; Girio F
    Int J Food Microbiol; 2006 May; 108(3):336-45. PubMed ID: 16564103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts.
    Moreira N; Mendes F; Hogg T; Vasconcelos I
    Int J Food Microbiol; 2005 Sep; 103(3):285-94. PubMed ID: 16099313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of volatile acidity of wines by selected yeast strains.
    Vilela-Moura A; Schuller D; Mendes-Faia A; Côrte-Real M
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):881-90. PubMed ID: 18677471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of grape treatment on the wine yeast populations isolated from spontaneous fermentations.
    Sturm J; Grossmann M; Schnell S
    J Appl Microbiol; 2006 Dec; 101(6):1241-8. PubMed ID: 17105554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.
    Arrizon J; Fiore C; Acosta G; Romano P; Gschaedler A
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):181-9. PubMed ID: 16534541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E; Gomar-Alba M; Palacios A; Ortiz-Julien A; del Olmo ML
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1551-61. PubMed ID: 20941492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of beta-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity.
    Fia G; Giovani G; Rosi I
    J Appl Microbiol; 2005; 99(3):509-17. PubMed ID: 16108792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.
    Funke M; Buchenauer A; Schnakenberg U; Mokwa W; Diederichs S; Mertens A; Müller C; Kensy F; Büchs J
    Biotechnol Bioeng; 2010 Oct; 107(3):497-505. PubMed ID: 20517981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.