BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21077077)

  • 1. Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences.
    Jiang J; Mukamel S
    Angew Chem Int Ed Engl; 2010 Dec; 49(50):9666-9. PubMed ID: 21077077
    [No Abstract]   [Full Text] [Related]  

  • 2. Simulation of two-dimensional ultraviolet spectroscopy of amyloid fibrils.
    Jiang J; Abramavicius D; Falvo C; Bulheller BM; Hirst JD; Mukamel S
    J Phys Chem B; 2010 Sep; 114(37):12150-6. PubMed ID: 20795695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing amyloid fibril structures in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy.
    Lam AR; Jiang J; Mukamel S
    Biochemistry; 2011 Nov; 50(45):9809-16. PubMed ID: 21961527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hole burning spectroscopy of ribonuclease A.
    Schnell C; Scharnagl C; Friedrich J
    Phys Chem Chem Phys; 2006 Mar; 8(11):1315-20. PubMed ID: 16633612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: a first principles study.
    Jiang J; Mukamel S
    Phys Chem Chem Phys; 2011 Feb; 13(6):2394-400. PubMed ID: 21132201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of multidimensional spectroscopic data to monitor unfolding of proteins.
    Ramsay GD; Eftink MR
    Methods Enzymol; 1994; 240():615-45. PubMed ID: 7823851
    [No Abstract]   [Full Text] [Related]  

  • 7. Exploring the aggregation propensity of γS-crystallin protein variants using two-dimensional spectroscopic tools.
    Jiang J; Golchert KJ; Kingsley CN; Brubaker WD; Martin RW; Mukamel S
    J Phys Chem B; 2013 Nov; 117(46):14294-301. PubMed ID: 24219230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Link between Affinity and Cu(II) Binding Sites to Amyloid-β Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity.
    Conte-Daban A; Borghesani V; Sayen S; Guillon E; Journaux Y; Gontard G; Lisnard L; Hureau C
    Anal Chem; 2017 Feb; 89(3):2155-2162. PubMed ID: 28208266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The difference spectra of bovine kidney RNase K2 induced upon binding with nucleotides markedly differ from those of bovine pancreatic RNase.
    Irie M; Ohgi K; Nitta R; Ikeda M; Ueno M
    J Biochem; 1989 Dec; 106(6):994-7. PubMed ID: 2628436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy.
    Jiang J; Mukamel S
    J Phys Chem B; 2011 May; 115(19):6321-8. PubMed ID: 21517033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the effect of trifluoroethanol on ribonuclease A. Subtle structural changes detected by nonspecific proteases.
    Köditz J; Arnold U; Ulbrich-Hofmann R
    Eur J Biochem; 2002 Aug; 269(15):3831-7. PubMed ID: 12153580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-induced structural evolution of silver sulfide at the nanoscale: from hollow particles to solid spheres.
    Chen J; Kong Y; Ji J; Ruan J; Wang K; Gao F; Cui D
    Nanoscale; 2012 Aug; 4(15):4455-8. PubMed ID: 22735828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein.
    Magrì A; Munzone A; Peana M; Medici S; Zoroddu MA; Hansson O; Satriano C; Rizzarelli E; La Mendola D
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27490533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A.
    Klink TA; Woycechowsky KJ; Taylor KM; Raines RT
    Eur J Biochem; 2000 Jan; 267(2):566-72. PubMed ID: 10632727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine pancreatic ribonuclease A: oxidative and conformational folding studies.
    Scheraga HA; Wedemeyer WJ; Welker E
    Methods Enzymol; 2001; 341():189-221. PubMed ID: 11582778
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis.
    Gaur D; Batra JK
    Mol Cell Biochem; 2005 Jul; 275(1-2):95-101. PubMed ID: 16335788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper(II) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin.
    La Mendola D; Magrì A; Vagliasindi LI; Hansson Ö; Bonomo RP; Rizzarelli E
    Dalton Trans; 2010 Nov; 39(44):10678-84. PubMed ID: 20941439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An oligopeptide containing the C-terminal sequence of RNase a has a potent RNase a binding property.
    Nakano S; Sugimoto N
    J Am Chem Soc; 2003 Jul; 125(29):8728-9. PubMed ID: 12862459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease A: using overtones and combination modes to monitor changes in secondary structure.
    Schultz CP; Fabian H; Mantsch HH
    Biospectroscopy; 1998; 4(5 Suppl):S19-29. PubMed ID: 9787911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction and far-UV CD studies of filaments formed by a leucine-rich repeat peptide: structural similarity to the amyloid fibrils of prions and Alzheimer's disease beta-protein.
    Symmons MF; Buchanan SG; Clarke DT; Jones G; Gay NJ
    FEBS Lett; 1997 Jul; 412(2):397-403. PubMed ID: 9256259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.