These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
3. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice. Kale A; Song L; Lu X; Yu L; Hu G; Xuan X Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080 [TBL] [Abstract][Full Text] [Related]
4. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Lewpiriyawong N; Xu G; Yang C Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585 [TBL] [Abstract][Full Text] [Related]
6. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels. Fernández-Mateo R; Calero V; Morgan H; Ramos A; García-Sánchez P Anal Chem; 2021 Nov; 93(44):14667-14674. PubMed ID: 34704741 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields. Zhu J; Xuan X Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378 [TBL] [Abstract][Full Text] [Related]
8. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity. Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401 [TBL] [Abstract][Full Text] [Related]
9. A continuous DC-insulator dielectrophoretic sorter of microparticles. Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990 [TBL] [Abstract][Full Text] [Related]
10. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices. Kale A; Patel S; Hu G; Xuan X Electrophoresis; 2013 Mar; 34(5):674-83. PubMed ID: 23192532 [TBL] [Abstract][Full Text] [Related]
11. Fluid rheological effects on streaming dielectrophoresis in a post-array microchannel. Bentor J; Raihan MK; McNeely C; Liu Z; Song Y; Xuan X Electrophoresis; 2022 Mar; 43(5-6):717-723. PubMed ID: 34657307 [TBL] [Abstract][Full Text] [Related]
12. DC insulator dielectrophoretic applications in microdevice technology: a review. Srivastava SK; Gencoglu A; Minerick AR Anal Bioanal Chem; 2011 Jan; 399(1):301-21. PubMed ID: 20967429 [TBL] [Abstract][Full Text] [Related]
13. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis. Pesch GR; Du F; Baune M; Thöming J J Chromatogr A; 2017 Feb; 1483():127-137. PubMed ID: 28057332 [TBL] [Abstract][Full Text] [Related]
14. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896 [TBL] [Abstract][Full Text] [Related]
15. Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Chen KP; Pacheco JR; Hayes MA; Staton SJ Electrophoresis; 2009 May; 30(9):1441-8. PubMed ID: 19425000 [TBL] [Abstract][Full Text] [Related]
16. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Aghilinejad A; Aghaamoo M; Chen X; Xu J Electrophoresis; 2018 Mar; 39(5-6):869-877. PubMed ID: 28975645 [TBL] [Abstract][Full Text] [Related]
17. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Xuan X Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344 [TBL] [Abstract][Full Text] [Related]
18. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669 [TBL] [Abstract][Full Text] [Related]
19. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape. Saucedo-Espinosa MA; Lapizco-Encinas BH Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065 [TBL] [Abstract][Full Text] [Related]