BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 21077235)

  • 1. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles.
    Pysher MD; Hayes MA
    Anal Chem; 2007 Jun; 79(12):4552-7. PubMed ID: 17487977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels.
    Barrett LM; Skulan AJ; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6798-804. PubMed ID: 16255576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of particles by pulsed dielectrophoresis.
    Cui HH; Voldman J; He XF; Lim KM
    Lab Chip; 2009 Aug; 9(16):2306-12. PubMed ID: 19636460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and evaluation of a ratchet type dielectrophoretic device for particle analysis.
    Gonzalez CF; Remcho VT
    J Chromatogr A; 2009 Dec; 1216(52):9063-70. PubMed ID: 19931864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.