These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21077587)
21. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations. Ruckenstein E; Shulgin IL; Tilson JL J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951 [TBL] [Abstract][Full Text] [Related]
22. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704 [TBL] [Abstract][Full Text] [Related]
24. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T; Furutani Y; Kandori H Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197 [TBL] [Abstract][Full Text] [Related]
25. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related]
26. Formation of Schiff-base for photoreaction mechanism of red shift of GFP spectra. Koseki J; Kita Y; Tachikawa M Biophys Chem; 2010 Apr; 147(3):140-5. PubMed ID: 20167417 [TBL] [Abstract][Full Text] [Related]
28. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
29. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
30. The hydrophobic substituent in aminophospholipids affects the formation kinetics of their Schiff bases. Caldés C; Vilanova B; Adrover M; Donoso J; Muñoz F Bioorg Med Chem Lett; 2013 Apr; 23(7):2202-6. PubMed ID: 23462644 [TBL] [Abstract][Full Text] [Related]
31. Proton-transfer reactions in reaction center of photosynthetic bacteria Rhodobacter sphaeroides. Kaneko Y; Hayashi S; Ohmine I J Phys Chem B; 2009 Jul; 113(26):8993-9003. PubMed ID: 19496556 [TBL] [Abstract][Full Text] [Related]
32. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution. Sharif S; Denisov GS; Toney MD; Limbach HH J Am Chem Soc; 2007 May; 129(19):6313-27. PubMed ID: 17455937 [TBL] [Abstract][Full Text] [Related]
33. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
34. The mechanism of formamide hydrolysis in water from ab initio calculations and simulations. Gorb L; Asensio A; Tuñón I; Ruiz-López MF Chemistry; 2005 Nov; 11(22):6743-53. PubMed ID: 16130156 [TBL] [Abstract][Full Text] [Related]
35. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
36. Direct observation of the substitution effects on the hydrogen bridge dynamics in selected Schiff bases--a comparative molecular dynamics study. Jezierska-Mazzarello A; Panek JJ; Vuilleumier R; Koll A; Ciccotti G J Chem Phys; 2011 Jan; 134(3):034308. PubMed ID: 21261354 [TBL] [Abstract][Full Text] [Related]
37. A theoretical investigation of the plausibility of reactions between ammonia and carbonyl species (formaldehyde, acetaldehyde, and acetone) in interstellar ice analogs at ultracold temperatures. Chen L; Woon DE J Phys Chem A; 2011 May; 115(20):5166-83. PubMed ID: 21534576 [TBL] [Abstract][Full Text] [Related]
38. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Kandt C; Gerwert K; Schlitter J Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339 [TBL] [Abstract][Full Text] [Related]
39. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885 [TBL] [Abstract][Full Text] [Related]
40. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A; Herzfeld J; Belenky M; Needleman R; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Dec; 42(48):14122-9. PubMed ID: 14640679 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]