These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 21077592)
1. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature. Shamim N; McKenna GB J Phys Chem B; 2010 Dec; 114(48):15742-52. PubMed ID: 21077592 [TBL] [Abstract][Full Text] [Related]
2. Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field. Micaelo NM; Baptista AM; Soares CM J Phys Chem B; 2006 Jul; 110(29):14444-51. PubMed ID: 16854154 [TBL] [Abstract][Full Text] [Related]
3. Photoinduced electron-transfer reactions in two room-temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate. Vieira RC; Falvey DE J Phys Chem B; 2007 May; 111(18):5023-9. PubMed ID: 17474706 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of the electrical conductivity of imidazolium ionic liquids. Leys J; Wübbenhorst M; Preethy Menon C; Rajesh R; Thoen J; Glorieux C; Nockemann P; Thijs B; Binnemans K; Longuemart S J Chem Phys; 2008 Feb; 128(6):064509. PubMed ID: 18282058 [TBL] [Abstract][Full Text] [Related]
5. The glass-liquid transition of water on hydrophobic surfaces. Souda R J Chem Phys; 2008 Sep; 129(12):124707. PubMed ID: 19045048 [TBL] [Abstract][Full Text] [Related]
6. Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate. Triolo A; Russina O; Hardacre C; Nieuwenhuyzen M; Gonzalez MA; Grimm H J Phys Chem B; 2005 Nov; 109(46):22061-6. PubMed ID: 16853864 [TBL] [Abstract][Full Text] [Related]
7. Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Gericke M; Schlufter K; Liebert T; Heinze T; Budtova T Biomacromolecules; 2009 May; 10(5):1188-94. PubMed ID: 19338350 [TBL] [Abstract][Full Text] [Related]
8. The electronic and topological properties of interactions between 1-butyl-3-methylimidazolium hexafluorophosphate/tetrafluoroborate and thiophene. Lü R; Qu Z; Yu H; Wang F; Wang S J Mol Graph Model; 2012 Jun; 36():36-41. PubMed ID: 22503861 [TBL] [Abstract][Full Text] [Related]
9. Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions. Rudaz C; Budtova T Carbohydr Polym; 2013 Feb; 92(2):1966-71. PubMed ID: 23399245 [TBL] [Abstract][Full Text] [Related]
10. Superpressing of a room temperature ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate. Yoshimura Y; Abe H; Takekiyo T; Shigemi M; Hamaya N; Wada R; Kato M J Phys Chem B; 2013 Oct; 117(40):12296-302. PubMed ID: 24020694 [TBL] [Abstract][Full Text] [Related]
11. Ionic liquid-promoted Wagner-Meerwein rearrangement of 16α,17α-epoxyandrostanes and 16α,17α-epoxyestranes. Horváth A; Szájli Á; Kiss R; Kóti J; Mahó S; Skoda-Földes R J Org Chem; 2011 Aug; 76(15):6048-56. PubMed ID: 21668005 [TBL] [Abstract][Full Text] [Related]
12. Gamma radiolysis of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Qi M; Wu G; Chen S; Liu Y Radiat Res; 2007 May; 167(5):508-14. PubMed ID: 17474789 [TBL] [Abstract][Full Text] [Related]
13. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO(2). Seki T; Grunwaldt JD; Baiker A J Phys Chem B; 2009 Jan; 113(1):114-22. PubMed ID: 19067550 [TBL] [Abstract][Full Text] [Related]
14. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932 [TBL] [Abstract][Full Text] [Related]
15. Effects of structural difference of ionic liquids on the catalysis of horseradish peroxidase. Hong ES; Park JH; Yoo IK; Ryu KG J Microbiol Biotechnol; 2009 Jul; 19(7):713-7. PubMed ID: 19652520 [TBL] [Abstract][Full Text] [Related]
16. Thermal, rheological, and ion-transport properties of phosphonium-based ionic liquids. Green MD; Schreiner C; Long TE J Phys Chem A; 2011 Dec; 115(47):13829-35. PubMed ID: 22026727 [TBL] [Abstract][Full Text] [Related]
17. Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies. Micaêlo NM; Soares CM J Phys Chem B; 2008 Mar; 112(9):2566-72. PubMed ID: 18266354 [TBL] [Abstract][Full Text] [Related]
18. Microwave-assisted separation of ionic liquids from aqueous solution of ionic liquids. Ha SH; Mai NL; Koo YM J Chromatogr A; 2010 Dec; 1217(49):7638-41. PubMed ID: 21040926 [TBL] [Abstract][Full Text] [Related]
19. Shear and extensional rheology of cellulose/ionic liquid solutions. Haward SJ; Sharma V; Butts CP; McKinley GH; Rahatekar SS Biomacromolecules; 2012 May; 13(5):1688-99. PubMed ID: 22480203 [TBL] [Abstract][Full Text] [Related]
20. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. He Y; Boswell PG; Bühlmann P; Lodge TP J Phys Chem B; 2007 May; 111(18):4645-52. PubMed ID: 17474692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]