BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21077670)

  • 1. Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation.
    Jo H; Culik RM; Korendovych IV; Degrado WF; Gai F
    Biochemistry; 2010 Dec; 49(49):10354-6. PubMed ID: 21077670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanylated Cysteine Reports Site-Specific Changes at Protein-Protein-Binding Interfaces Without Perturbation.
    Dalton SR; Vienneau AR; Burstein SR; Xu RJ; Linse S; Londergan CH
    Biochemistry; 2018 Jul; 57(26):3702-3712. PubMed ID: 29787228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.
    Maj M; Ahn C; Kossowska D; Park K; Kwak K; Han H; Cho M
    Phys Chem Chem Phys; 2015 May; 17(17):11770-8. PubMed ID: 25869854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview.
    Lindquist BA; Furse KE; Corcelli SA
    Phys Chem Chem Phys; 2009 Oct; 11(37):8119-32. PubMed ID: 19756266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing structural transitions in the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by vibrational spectroscopy of cyanylated cysteines.
    Bischak CG; Longhi S; Snead DM; Costanzo S; Terrer E; Londergan CH
    Biophys J; 2010 Sep; 99(5):1676-83. PubMed ID: 20816082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using nitrile-derivatized amino acids as infrared probes of local environment.
    Getahun Z; Huang CY; Wang T; De León B; DeGrado WF; Gai F
    J Am Chem Soc; 2003 Jan; 125(2):405-11. PubMed ID: 12517152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins.
    Fafarman AT; Webb LJ; Chuang JI; Boxer SG
    J Am Chem Soc; 2006 Oct; 128(41):13356-7. PubMed ID: 17031938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe.
    Liu J; Strzalka J; Tronin A; Johansson JS; Blasie JK
    Biophys J; 2009 May; 96(10):4176-87. PubMed ID: 19450488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, III: Molecular dynamics simulation incorporating a cyanophenylalanine spectroscopic probe.
    Zou H; Liu J; Blasie JK
    Biophys J; 2009 May; 96(10):4188-99. PubMed ID: 19450489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel fluorescent probe for protein binding and folding studies: p-cyano-phenylalanine.
    Tucker MJ; Oyola R; Gai F
    Biopolymers; 2006 Dec; 83(6):571-6. PubMed ID: 16917881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for coupling between nitrile groups using DNA templates: a promising new method for monitoring structures with infrared spectroscopy.
    Krummel AT; Zanni MT
    J Phys Chem B; 2008 Feb; 112(5):1336-8. PubMed ID: 18197662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple method to introduce an ester infrared probe into proteins.
    Ahmed IA; Gai F
    Protein Sci; 2017 Feb; 26(2):375-381. PubMed ID: 27813296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.
    Deb P; Haldar T; Kashid SM; Banerjee S; Chakrabarty S; Bagchi S
    J Phys Chem B; 2016 May; 120(17):4034-46. PubMed ID: 27090068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended timescale 2D IR probes of proteins: p-cyanoselenophenylalanine.
    Ramos S; Scott KJ; Horness RE; Le Sueur AL; Thielges MC
    Phys Chem Chem Phys; 2017 Apr; 19(15):10081-10086. PubMed ID: 28367555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups.
    Kelly KL; Dalton SR; Wai RB; Ramchandani K; Xu RJ; Linse S; Londergan CH
    J Phys Chem A; 2018 Mar; 122(11):2947-2955. PubMed ID: 29400461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-targeted labeling of proteins using cysteine and selenomethionine residues.
    Lang S; Spratt DE; Guillemette JG; Palmer M
    Anal Biochem; 2005 Jul; 342(2):271-9. PubMed ID: 15950913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoenhancement of the C≡N Stretching Vibration Intensity of Aromatic Nitriles.
    Liu J; Feng RR; Zhou L; Gai F; Zhang W
    J Phys Chem Lett; 2022 Oct; 13(41):9745-9751. PubMed ID: 36222647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles.
    Xue L; Zou F; Zhao Y; Huang X; Qu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():858-63. PubMed ID: 22902928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared probes for studying the structure and dynamics of biomolecules.
    Kim H; Cho M
    Chem Rev; 2013 Aug; 113(8):5817-47. PubMed ID: 23679868
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins.
    van Wilderen LJGW; Brunst H; Gustmann H; Wachtveitl J; Broos J; Bredenbeck J
    Phys Chem Chem Phys; 2018 Aug; 20(30):19906-19915. PubMed ID: 30019716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.