BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21077712)

  • 1. Time variations in the generation time of an infectious disease: implications for sampling to appropriately quantify transmission potential.
    Nishiura H
    Math Biosci Eng; 2010 Oct; 7(4):851-69. PubMed ID: 21077712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Household and community transmission of the Asian influenza A (H2N2) and influenza B viruses in 1957 and 1961.
    Nishiura H; Chowell G
    Southeast Asian J Trop Med Public Health; 2007 Nov; 38(6):1075-83. PubMed ID: 18613549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some model based considerations on observing generation times for communicable diseases.
    Scalia Tomba G; Svensson A; Asikainen T; Giesecke J
    Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model.
    Inaba H; Nishiura H
    Math Biosci; 2008 Nov; 216(1):77-89. PubMed ID: 18768142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic models with heterogeneous mixing and treatment.
    Brauer F
    Bull Math Biol; 2008 Oct; 70(7):1869-85. PubMed ID: 18663538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19.
    Nishiura H
    Theor Biol Med Model; 2007 Jun; 4():20. PubMed ID: 17547753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A note on generation times in epidemic models.
    Svensson A
    Math Biosci; 2007 Jul; 208(1):300-11. PubMed ID: 17174352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invasion of infectious diseases in finite homogeneous populations.
    Ross JV
    J Theor Biol; 2011 Nov; 289():83-9. PubMed ID: 21903101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter estimation and uncertainty quantification for an epidemic model.
    Capaldi A; Behrend S; Berman B; Smith J; Wright J; Lloyd AL
    Math Biosci Eng; 2012 Jul; 9(3):553-76. PubMed ID: 22881026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The correlation between infectivity and incubation period of measles, estimated from households with two cases.
    Klinkenberg D; Nishiura H
    J Theor Biol; 2011 Sep; 284(1):52-60. PubMed ID: 21704640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating individual and household reproduction numbers in an emerging epidemic.
    Fraser C
    PLoS One; 2007 Aug; 2(8):e758. PubMed ID: 17712406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Richards model revisited: validation by and application to infection dynamics.
    Wang XS; Wu J; Yang Y
    J Theor Biol; 2012 Nov; 313():12-9. PubMed ID: 22889641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.