These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21077833)

  • 1. Influence of ATP-dependent K(+)-channel opener on K(+)-cycle and oxygen consumption in rat liver mitochondria.
    Akopova OV; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2010 Sep; 75(9):1139-47. PubMed ID: 21077833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of ATP-dependent K(+)-channel opener on the functional state and the opening of cyclosporine-sensitive pore in rat liver mitochondria].
    Akopova OV; Nosar' VI; Buryĭ VA; Kolchinskaia LI; Man'kovskaia IN; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(3):38-51. PubMed ID: 23937047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.
    Akopova OV; Nosar VI; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2008 Oct; 73(10):1146-53. PubMed ID: 18991562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of ATP-dependent K(+)-channel opener on transmembrane potassium exchange and reactive oxygen species production upon the opening of mitochondrial pore].
    Akopova OV; Kolchinskaia LI; Nosar' VI; Buryĭ VA; Man'kovskaia IN; Sagach VF
    Ukr Biochem J; 2014; 86(2):26-40. PubMed ID: 24868909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ?
    Ovide-Bordeaux S; Ventura-Clapier R; Veksler V
    J Biol Chem; 2000 Nov; 275(47):37291-5. PubMed ID: 10970894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of liver regeneration by adenosine triphosphate-sensitive K⁺ channel opener (diazoxide) after partial hepatectomy.
    Nakagawa Y; Yoshioka M; Abe Y; Uchinami H; Ohba T; Ono K; Yamamoto Y
    Transplantation; 2012 Jun; 93(11):1094-100. PubMed ID: 22466787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of ATP-dependent K(+)-channel diazoxide opener on the opening of mitochondrial permeability transition pore in rat liver mitochondria].
    Akopova OV
    Ukr Biokhim Zh (1999); 2011; 83(3):37-47. PubMed ID: 21888053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol-enriched diet inhibits cardioprotection by ATP-sensitive K+ channel activators cromakalim and diazoxide.
    Csonka C; Kupai K; Bencsik P; Görbe A; Pálóczi J; Zvara A; Puskás LG; Csont T; Ferdinandy P
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(3):H405-13. PubMed ID: 24285110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T; Shalbuyeva N; Brustovetsky N
    J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].
    Tkachenko HM; Kurhaliuk NM; Vovkanych LS
    Ukr Biokhim Zh (1999); 2004; 76(1):56-64. PubMed ID: 15909418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of K(ATP) channels in morphine-induced antinociception and hepatic oxidative stress in acute and inflammatory pain in rats.
    Afify EA; Khedr MM; Omar AG; Nasser SA
    Fundam Clin Pharmacol; 2013 Dec; 27(6):623-31. PubMed ID: 23033987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of atp-dependent potassium uptake on mitochondrial functions under acute hypoxia.
    Akopova O; Nosar V; Gavenauskas B; Bratus L; Kolchinskaya L; Mankovska I; Sagach V
    J Bioenerg Biomembr; 2016 Feb; 48(1):67-75. PubMed ID: 26739597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of mitochondrial ATP-dependent potassium channel effectors diazoxide and glybenclamide on hydrodynamic diameter and membrane potential of the myometrial mitochondria].
    Vadziuk OB; Chunikhin OIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2010; 82(4):40-7. PubMed ID: 21516715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulators of mitochondrial ATP-sensitive potassium channel affect cytotoxicity of heavy metals: Action on isolated rat liver mitochondria and AS-30D ascites hepatoma cells.
    Belyaeva EA
    Ecotoxicol Environ Saf; 2023 May; 256():114829. PubMed ID: 36989557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of the fluorine-containing activators of mitochondrial adenosine triphosphate sensitive potassium channels on the oxidative phosphorilation].
    Pyvovar SM; Korzhov VI; Strutyns'kyĭ RB; Iahupol's'kyĭ LM; Moĭbenko OO
    Fiziol Zh (1994); 2006; 52(3):25-33. PubMed ID: 16909753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo.
    Broadhead MW; Kharbanda RK; Peters MJ; MacAllister RJ
    Circulation; 2004 Oct; 110(15):2077-82. PubMed ID: 15466634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
    Das M; Parker JE; Halestrap AP
    J Physiol; 2003 Mar; 547(Pt 3):893-902. PubMed ID: 12562892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.