BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21077901)

  • 1. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii.
    Li J; Chen G; Wang X; Zhang Y; Jia H; Bi Y
    Physiol Plant; 2011 Mar; 141(3):239-50. PubMed ID: 21077901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in H2O2 and salicylic acid contents as well as plasma membrane H+-ATPase activity and their relations in pea leaves during thermotolerance induction].
    Pan QH; Zhang YJ; Liu YY; Zhang YF; Huang WD
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Oct; 33(5):425-34. PubMed ID: 17960046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species.
    Sun J; Chen S; Dai S; Wang R; Li N; Shen X; Zhou X; Lu C; Zheng X; Hu Z; Zhang Z; Song J; Xu Y
    Plant Physiol; 2009 Feb; 149(2):1141-53. PubMed ID: 19028881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt-Sensitive Signaling Networks in the Mediation of K
    Lang T; Deng S; Zhao N; Deng C; Zhang Y; Zhang Y; Zhang H; Sa G; Yao J; Wu C; Wu Y; Deng Q; Lin S; Xia J; Chen S
    Front Plant Sci; 2017; 8():1403. PubMed ID: 28855912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H
    Yu Y; Wang A; Li X; Kou M; Wang W; Chen X; Xu T; Zhu M; Ma D; Li Z; Sun J
    Front Plant Sci; 2018; 9():256. PubMed ID: 29535758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots.
    Chen J; Wang WH; Wu FH; He EM; Liu X; Shangguan ZP; Zheng HL
    Sci Rep; 2015 Jul; 5():12516. PubMed ID: 26213372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
    Harvey WR
    J Exp Biol; 2009 Jun; 212(Pt 11):1620-9. PubMed ID: 19448072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conserved evolution of plant H
    Jia B; Cui H; Zhang D; Hu B; Li Y; Shen Y; Cai X; Sun X; Sun M
    Plant Physiol Biochem; 2023 Nov; 204():108133. PubMed ID: 37883915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots.
    Yang YL; Zhang F; He WL; Wang XM; Zhang LX
    Cell Mol Life Sci; 2003 Jun; 60(6):1249-57. PubMed ID: 12861390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide and hydrogen peroxide during the salt resistance response.
    Zhang F; Wang Y; Wang D
    Plant Signal Behav; 2007 Nov; 2(6):473-4. PubMed ID: 19704588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress.
    Im JH; Lee H; Kim J; Kim HB; An CS
    Mol Cells; 2012 Sep; 34(3):271-8. PubMed ID: 22886763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of a Plasma Membrane Bound Na
    Kumari PH; Kumar SA; Sivan P; Katam R; Suravajhala P; Rao KS; Varshney RK; Kishor PB
    Front Plant Sci; 2016; 7():2027. PubMed ID: 28111589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis.
    Han X; Yang Y; Wu Y; Liu X; Lei X; Guo Y
    J Exp Bot; 2017 May; 68(11):2951-2962. PubMed ID: 28582540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Sodium Ions by Exopolysaccharides from
    Liu X; Yao T; Chai J; Han J
    J Agric Food Chem; 2023 Dec; 71(50):19949-19957. PubMed ID: 38018896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Glucose-6-phosphate Dehydrogenase in the Wine Yeast
    Heinisch JJ; Murra A; Fernández Murillo L; Schmitz HP
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397078
    [No Abstract]   [Full Text] [Related]  

  • 16. Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte.
    Katschnig D; Jaarsma R; Almeida P; Rozema J; Schat H
    AoB Plants; 2014 May; 6():. PubMed ID: 24887002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the vacuolar Na+/H+ antiporter (
    Adabnejad H; Kavousi HR; Hamidi H; Tavassolian I
    Mol Biol Res Commun; 2015 Sep; 4(3):133-142. PubMed ID: 27844005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrate induces oxidative burst mediated apoptosis via Glucose-6-Phosphate Dehydrogenase (G6PDH) in macrophages during mycobacterial infection.
    Rana AK; Kumar Saraswati SS; Anang V; Singh A; Singh A; Verma C; Natarajan K
    Microbes Infect; 2024; 26(3):105271. PubMed ID: 38036036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual and combinative effect of NaCl and γ-radiation on NADPH-generating enzymes activity in corn (
    Aliyeva N; Nasibova A; Mammadov Z; Eftekhari A; Khalilov R
    Heliyon; 2023 Nov; 9(11):e22126. PubMed ID: 38034760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-induced respiration in Bruguiera cylindrica - role in salt transport and protection against oxidative damage.
    Atreya A; Bhargava S
    Physiol Mol Biol Plants; 2008 Jul; 14(3):217-26. PubMed ID: 23572889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.