BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 2107796)

  • 21. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bactericidal Effect of Calcium Oxide (Scallop-Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber.
    Jung SJ; Park SY; Kim SE; Kang I; Park J; Lee J; Kim CM; Chung MS; Ha SD
    J Food Sci; 2017 Jul; 82(7):1682-1687. PubMed ID: 28627772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces.
    Jindal S; Anand S
    J Dairy Sci; 2018 Jul; 101(7):5799-5808. PubMed ID: 29605327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces.
    DeQueiroz GA; Day DF
    J Appl Microbiol; 2007 Oct; 103(4):794-802. PubMed ID: 17897181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface characteristics of Bacillus cereus and its adhesion to stainless steel.
    Peng JS; Tsai WC; Chou CC
    Int J Food Microbiol; 2001 Apr; 65(1-2):105-11. PubMed ID: 11322692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salt modulates bacterial hydrophobicity and charge properties influencing adhesion of Pseudomonas aeruginosa (PA01) in aqueous suspensions.
    Shephard JJ; Savory DM; Bremer PJ; McQuillan AJ
    Langmuir; 2010 Jun; 26(11):8659-65. PubMed ID: 20415441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental survivability and surface sampling efficiencies for Pseudomonas aeruginosa on various fomites.
    Jones TM; Lutz EA
    J Environ Health; 2014 May; 76(9):16-20. PubMed ID: 24909008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial adhesion to hydrocarbons: role of asphaltenes and resins.
    Warne Zoueki C; Ghoshal S; Tufenkji N
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):219-26. PubMed ID: 20452190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.
    Yang Y; Rouxhet PG; Chudziak D; Telegdi J; Dupont-Gillain CC
    Bioelectrochemistry; 2014 Jun; 97():127-36. PubMed ID: 24650936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pooled human immunoglobulins reduce adhesion of Pseudomonas aeruginosa in a parallel plate flow chamber.
    Poelstra KA; van der Mei HC; Gottenbos B; Grainger DW; van Horn JR; Busscher HJ
    J Biomed Mater Res; 2000 Aug; 51(2):224-32. PubMed ID: 10825222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of bacterial adhesion on titanium-doped diamond-like carbon coatings.
    Zhao YY; Zhao B; Su X; Zhang S; Wang S; Keatch R; Zhao Q
    Biofouling; 2018 Jan; 34(1):26-33. PubMed ID: 29334813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria.
    Bruzaud J; Tarrade J; Celia E; Darmanin T; Taffin de Givenchy E; Guittard F; Herry JM; Guilbaud M; Bellon-Fontaine MN
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():40-47. PubMed ID: 28183625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films.
    Bernbom N; Ng YY; Jørgensen RL; Arpanaei A; Meyer RL; Kingshott P; Vejborg RM; Klemm P; Gram L
    J Appl Microbiol; 2009 Apr; 106(4):1268-79. PubMed ID: 19187146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.
    Davis EM; Li D; Shahrooei M; Yu B; Muruve D; Irvin RT
    Acta Biomater; 2013 Apr; 9(4):6236-44. PubMed ID: 23212080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attachment of Shiga toxigenic Escherichia coli to stainless steel.
    Rivas L; Fegan N; Dykes GA
    Int J Food Microbiol; 2007 Apr; 115(1):89-94. PubMed ID: 17207875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface free energy effect on bacterial retention.
    Pereni CI; Zhao Q; Liu Y; Abel E
    Colloids Surf B Biointerfaces; 2006 Mar; 48(2):143-7. PubMed ID: 16545555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stainless steel and polyethylene surfaces functionalized with silver nanoparticles.
    Fialho JF; Naves EA; Bernardes PC; Ferreira DC; Dos Anjos LD; Gelamo RV; de Sá JP; de Andrade NJ
    Food Sci Technol Int; 2018 Jan; 24(1):87-94. PubMed ID: 28929793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adhesion of Pseudomonas aeruginosa to silicone rubber in a parallel plate flow chamber in the absence and presence of nutrient broth.
    Habash MB; van der Mei HC; Reid G; Busscher HJ
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2569-2574. PubMed ID: 9274010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water.
    Deza MA; Araujo M; Garrido MJ
    Lett Appl Microbiol; 2005; 40(5):341-6. PubMed ID: 15836736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.