These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 2107796)

  • 41. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon.
    Shakerifard P; Gancel F; Jacques P; Faille C
    Biofouling; 2009; 25(6):533-41. PubMed ID: 19431000
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.
    Casarin LS; Brandelli A; de Oliveira Casarin F; Soave PA; Wanke CH; Tondo EC
    Int J Food Microbiol; 2014 Nov; 191():103-8. PubMed ID: 25261827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness.
    Bezek K; Nipič D; Torkar KG; Oder M; Dražić G; Abram A; Žibert J; Raspor P; Bohinc K
    Biofouling; 2019 Mar; 35(3):273-283. PubMed ID: 31025585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacterial adhesion to glass and metal-oxide surfaces.
    Li B; Logan BE
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The contribution of bacterial surface hydrophobicity to the process of adherence of Pseudomonas aeruginosa to hydrophilic contact lenses.
    Klotz SA; Butrus SI; Misra RP; Osato MS
    Curr Eye Res; 1989 Feb; 8(2):195-202. PubMed ID: 2496954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria.
    Zhang X; Yang C; Xi T; Zhao J; Yang K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2303-2315. PubMed ID: 33395246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Adherence to copper and stainless steel metal coupons of common nosocomial bacterial strains].
    Prado J V; Esparza M M; Vidal A R; Durán T C
    Rev Med Chil; 2013 Mar; 141(3):291-7. PubMed ID: 23900318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel.
    Flint SH; Brooks JD; Bremer PJ
    J Appl Microbiol; 1997 Oct; 83(4):508-17. PubMed ID: 9351231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates.
    Akens MK; Chien C; Katchky RN; Kreder HJ; Finkelstein J; Whyne CM
    BMC Musculoskelet Disord; 2018 Jul; 19(1):260. PubMed ID: 30049271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses.
    Bruinsma GM; van der Mei HC; Busscher HJ
    Biomaterials; 2001 Dec; 22(24):3217-24. PubMed ID: 11700793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of ozonation and chlorination for the disinfection of stainless steel surfaces.
    Greene AK; Few BK; Serafini JC
    J Dairy Sci; 1993 Nov; 76(11):3617-20. PubMed ID: 8270705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film.
    Mei L; van der Mei HC; Ren Y; Norde W; Busscher HJ
    Langmuir; 2009 Jun; 25(11):6227-31. PubMed ID: 19284713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study.
    Arnold JW; Bailey GW
    Poult Sci; 2000 Dec; 79(12):1839-45. PubMed ID: 11194050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.
    Checketts MR; Turkyilmaz I; Asar NV
    J Prosthet Dent; 2014 Nov; 112(5):1265-70. PubMed ID: 24831748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.
    Veluz GA; Pitchiah S; Alvarado CZ
    Poult Sci; 2012 Aug; 91(8):2004-10. PubMed ID: 22802197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion.
    Czaczyk K; Białas W; Myszka K
    Pol J Microbiol; 2008; 57(4):313-9. PubMed ID: 19275045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel.
    George RP; Muraleedharan P; Sreekumari KR; Khatak HS
    Biofouling; 2003 Feb; 19(1):1-8. PubMed ID: 14618684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression.
    Caly D; Takilt D; Lebret V; Tresse O
    Lett Appl Microbiol; 2009 Dec; 49(6):751-6. PubMed ID: 19793195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses.
    Harimawan A; Rajasekar A; Ting YP
    J Colloid Interface Sci; 2011 Dec; 364(1):213-8. PubMed ID: 21889162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
    Awad TS; Asker D; Hatton BD
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.