BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21078014)

  • 1. The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus.
    Belanger AJ; Bobeica I; Higgs DM
    J Fish Biol; 2010 Nov; 77(7):1488-504. PubMed ID: 21078014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condition-dependent auditory processing in the round goby (Neogobius melanostomus): links to sex, reproductive condition and female estrogen levels.
    Zeyl JN; Love OP; Higgs DM
    J Exp Biol; 2013 Mar; 216(Pt 6):1075-84. PubMed ID: 23197092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea.
    Wysocki LE; Codarin A; Ladich F; Picciulin M
    J Acoust Soc Am; 2009 Oct; 126(4):2100-7. PubMed ID: 19813819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli.
    Lucke K; Siebert U; Lepper PA; Blanchet MA
    J Acoust Soc Am; 2009 Jun; 125(6):4060-70. PubMed ID: 19507987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure.
    Mooney TA; Hanlon RT; Christensen-Dalsgaard J; Madsen PT; Ketten DR; Nachtigall PE
    J Exp Biol; 2010 Nov; 213(Pt 21):3748-59. PubMed ID: 20952625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient stimuli for evoking auditory steady-state responses.
    John MS; Dimitrijevic A; Picton TW
    Ear Hear; 2003 Oct; 24(5):406-23. PubMed ID: 14534411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications.
    Kornis MS; Mercado-Silva N; Vander Zanden MJ
    J Fish Biol; 2012 Feb; 80(2):235-85. PubMed ID: 22268429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of 40 Hz auditory steady-state response (ASSR) and cortical auditory evoked potential (CAEP) thresholds in awake adult subjects.
    Tomlin D; Rance G; Graydon K; Tsialios I
    Int J Audiol; 2006 Oct; 45(10):580-8. PubMed ID: 17062499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats?
    Amoser S; Ladich F
    J Exp Biol; 2005 Sep; 208(Pt 18):3533-42. PubMed ID: 16155225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of amplitude modulation of background noise on auditory-evoked magnetic fields.
    Hiraumi H; Nagamine T; Morita T; Naito Y; Fukuyama H; Ito J
    Brain Res; 2008 Nov; 1239():191-7. PubMed ID: 18778694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts.
    Radford CA; Montgomery JC; Caiger P; Higgs DM
    J Exp Biol; 2012 Oct; 215(Pt 19):3429-35. PubMed ID: 22693030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of low-frequency tones and whale predator sounds by the American sand lance Ammodytes americanus.
    Strobel SM; Mooney TA
    J Fish Biol; 2012 Oct; 81(5):1646-64. PubMed ID: 23020566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.
    Wang X; Jen PH; Wu FJ; Chen QC
    Brain Res; 2007 Sep; 1167():80-91. PubMed ID: 17689505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dependence of the auditory evoked N1m decrement on the bandwidth of preceding notch-filtered noise.
    Okamoto H; Kakigi R; Gunji A; Kubo T; Pantev C
    Eur J Neurosci; 2005 Apr; 21(7):1957-61. PubMed ID: 15869488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromagnetic evaluation of binaural unmasking.
    Sasaki T; Kawase T; Nakasato N; Kanno A; Ogura M; Tominaga T; Kobayashi T
    Neuroimage; 2005 Apr; 25(3):684-9. PubMed ID: 15808969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Gender, Tone, and Sound Location on the Response Behavior of Neogobius melanostomus (Round Goby) and the Possibility of Future Trapping of this Invasive Species in Lake Superior.
    Moynan CR; Neumann CE; Welsh CA
    Zebrafish; 2016 Aug; 13(4):287-92. PubMed ID: 26757232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis.
    Maruska KP; Boyle KS; Dewan LR; Tricas TC
    J Exp Biol; 2007 Nov; 210(Pt 22):3990-4004. PubMed ID: 17981867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.