BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 21078089)

  • 1. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.
    Lynch AJ; Taylor WW; Smith KD
    J Fish Biol; 2010 Nov; 77(8):1764-82. PubMed ID: 21078089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.
    Pörtner HO; Peck MA
    J Fish Biol; 2010 Nov; 77(8):1745-79. PubMed ID: 21078088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.
    Evans MS; Muir D; Lockhart WL; Stern G; Ryan M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():94-147. PubMed ID: 16225909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad- to fine-scale population genetic patterning in the smallmouth bass Micropterus dolomieu across the Laurentian Great Lakes and beyond: an interplay of behaviour and geography.
    Stepien CA; Murphy DJ; Strange RM
    Mol Ecol; 2007 Apr; 16(8):1605-24. PubMed ID: 17402977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A
    Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.
    Sandheinrich MB; Bhavsar SP; Bodaly RA; Drevnick PE; Paul EA
    Ecotoxicology; 2011 Oct; 20(7):1577-87. PubMed ID: 21691859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of climate change effects of fish communities in the Mackinaw River watershed, Illinois, USA.
    Herricks EE; Bergner ER
    Water Sci Technol; 2003; 48(10):199-207. PubMed ID: 15137171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projected shifts in fish species dominance in Wisconsin lakes under climate change.
    Hansen GJ; Read JS; Hansen JF; Winslow LA
    Glob Chang Biol; 2017 Apr; 23(4):1463-1476. PubMed ID: 27608297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. History and heroes: the thermal niche of fishes and long-term lake ice dynamics.
    Magnuson JJ
    J Fish Biol; 2010 Nov; 77(8):1731-44. PubMed ID: 21078087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drivers and Management Implications of Long-Term Cisco Oxythermal Habitat Decline in Lake Mendota, WI.
    Magee MR; McIntyre PB; Hanson PC; Wu CH
    Environ Manage; 2019 Mar; 63(3):396-407. PubMed ID: 30645675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vulnerability of Fraser River sockeye salmon to climate change: a life cycle perspective using expert judgments.
    McDaniels T; Wilmot S; Healey M; Hinch S
    J Environ Manage; 2010 Dec; 91(12):2771-80. PubMed ID: 20810206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.
    Tisseuil C; Vrac M; Grenouillet G; Wade AJ; Gevrey M; Oberdorff T; Grodwohl JB; Lek S
    Sci Total Environ; 2012 May; 424():193-201. PubMed ID: 22425276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications.
    Kornis MS; Mercado-Silva N; Vander Zanden MJ
    J Fish Biol; 2012 Feb; 80(2):235-85. PubMed ID: 22268429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the effects of climate change on aquatic invasive species.
    Rahel FJ; Olden JD
    Conserv Biol; 2008 Jun; 22(3):521-33. PubMed ID: 18577081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and waterborne disease risk in the Great Lakes region of the U.S.
    Patz JA; Vavrus SJ; Uejio CK; McLellan SL
    Am J Prev Med; 2008 Nov; 35(5):451-8. PubMed ID: 18929971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa.
    O'Reilly CM; Alin SR; Plisnier PD; Cohen AS; McKee BA
    Nature; 2003 Aug; 424(6950):766-8. PubMed ID: 12917682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.